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law of motion of aggregate variables. Moreover, I establish convergence of the

proposed algorithm to the rational expectations equilibrium. Economically, I find
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1. INTRODUCTION

Economies consist of heterogeneous agents who are exposed to various idiosyn-

cratic risks, the most prominent example of which is labor income risk for house-

holds. This was first modeled in a dynamic stochastic general equilibrium (DSGE)

model by Bewley (1977) where agents face idiosyncratic income shocks affecting

their wealth, and, extended by Aiyagari (1994) to include a production technol-

ogy. They show that individual precautionary savings contribute to aggregate

savings because idiosyncratic risk cannot be fully insured. Other examples of

idiosyncratic risks are firm-specific productivity shocks in models of firm exit

and entry as in Hopenhayn (1992) or uninsurable persistent income shocks as

in Constantinides and Duffie (1996), who show that these shock have a strong

impact on the equity premium. Lately, there has been a renewed interest in het-

erogeneous agent models. Many recent studies reevaluate the impact of hetero-

geneity in the economy and find strong implications. Let me mention just a few

examples. Khan and Thomas (2008) model heterogeneity to investigate the ef-

fect of non-convex adjustment costs and find that they are important to produce

a realistic investment rate distribution. Apart from achieving a realistic wealth

distribution using heterogeneous households trading in two assets, Kaplan et al.

(2018) investigate the effect of monetary policy on the consumption of households.

They find that the indirect effects significantly outweigh the direct ones. In finance,

Storesletten et al. (2007) find a moderate effect of idiosyncratic risk on the Sharpe

ratio, but a significant negative impact on inter-generational risk sharing. Overall,

there is plenty of evidence that idiosyncratic risks have a sizable impact on the

economy.

Many of these models do not feature aggregate risk, however, to avoid the corre-

sponding difficulties in solving the model. The challenge in constructing a solution

algorithm lies in handling the cross-sectional distribution of the agents’ idiosyn-

cratic variables, which becomes an infinite-dimensional element of the state space.

Moreover, this distribution changes stochastically over time depending on the real-

ization of the aggregate shocks. The aggregate variables evolve, in turn, depending

on how the cross-sectional distribution changes. Models as in Storesletten et al.

(2007) and Khan and Thomas (2008) which do include aggregate risk, on the other

hand, are typically solved using the Krusell-Smith algorithm.

In their seminal paper, Krusell and Smith (1998) were the first to propose a

global solution algorithm for the Aiyagari growth model with aggregate risk. They

handle the dimensionality problem in assuming bounded rationality, which means

that agents are not required to observe the whole cross-sectional distribution to



3

predict the movement of aggregate variables. They rather use a parametric law

of motion for the aggregate variables depending on a finite number of moments.

Given that assumption, they then solve the model by iterating on the following

two steps: Solving for the optimal policies given a guess of parameters for the

aggregate variables’ law of motion, and second, estimating new parameters for

the law of motion given a set of simulated data from the new optimal policy.

The main economic result from this seminal work is that, given the bounded

rationality assumption, adding moments higher than the mean to the parametric

law of motion does not change the equilibrium solution. Hence, the idiosyncratic

risk does not matter for aggregation. Various more recent papers improve the

original algorithm mainly by eliminating the agent dimension in the simulation

step, and, by varying the parametric form of the law of motion. However, these

works still more or less rely on the bounded rationality assumption.

The existing methodology of global solution methods for heterogeneous agent

models with aggregate risk has several drawbacks. First, it is not clear whether

the assumed parametric law of motion for the aggregates in the bounded ratio-

nal expectations equilibrium is indeed close to its equivalent in the fully rational

expectations equilibrium. Generally, it is unknown whether the bounded rational

solution is at all close to the fully rational solution as convergence results are lack-

ing and there is no theory on measuring their distance. Second, it is not clear a

priori how many moments are necessary for the bounded rational equilibrium to

exist. In fact, Kubler and Schmedders (2002) show that there are models, for which

recursive equilibria depending only on aggregate wealth, i.e., the first moment of

the cross-sectional distribution, do not exist.

The main contribution of this paper is a novel global solution method for

DSGE models featuring both idiosyncratic and aggregate risk. Most importantly,

I prove convergence to the theoretical rational expectations equilibrium. What

distinguishes this algorithm from existing solution procedures is that it discretizes

the space of cross-sectional distributions rather than assuming a parametric law

of motion for the aggregate variables. To discretize, I use a projection method

called generalized polynomial chaos which extends the polynomial projection of

real functions to a projection of square-integrable random variables. It can, hence,

be interpreted as a probabilistic polynomial projection. This method has several

advantages over standard polynomial projection. First of all, polynomial chaos

does not require smoothness and can, therefore, handle distributions with mass

points. This is relevant for discrete-time models with borrowing constraints as

these models feature mass points in the cross-sectional distribution. Moreover,
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the location of these mass points is endogenous such that one cannot simply treat

them separately. Another advantage is that polynomial chaos converges quite fast.

Lastly, by approximating the full distribution, the aggregate variables emerge au-

tomatically in a nonparametric fashion. Therefore, I do not require a separate

step in the solution algorithm to estimate their law of motion. No simulation is

necessary.

To illustrate the advantages of the proposed algorithm numerically, I compute

two example models: The Aiyagari-Bewley model with aggregate risk which has

become a benchmark model in the computational economics literature, and, the

Huggett model with aggregate risk which in contrast to the Aiyagari-Bewley econ-

omy does not feature approximate aggregation. When comparing the numerical

solution of the proposed algorithm to existing methods, I find a significant im-

provement in precision for individual policies in terms of Euler equation errors as

well as a significant improvement in the prediction of the law of motion of aggre-

gate variables. Solutions with sufficient precision are achieved by approximations

of order two in the case of the Aiyagari-Bewley economy and approximations of

order three in the case of the Huggett economy. Note that an order zero approxima-

tion leads to optimal policies, which depend solely on the mean of the distribution,

whereas, order one and higher lead to policies, which depend on an approxima-

tion of the whole cross-sectional distribution. The fact that orders higher than

zero are needed in the example models implies that idiosyncratic risk matters

in the respective rational expectations equilibrium. Nevertheless, it is possible

to retrace why Krusell and Smith (1998) obtain their approximate aggregation

result for the Aiyagari-Bewley model. An alternative definition of approximate

aggregation can be given by measuring the change in the expected ergodic cross-

sectional capital distribution when the approximation order increases. This change

is insignificant for the benchmark calibration of the Aiyagari-Bewley economy in

Krusell and Smith (1998). Surprisingly, approximate aggregation does not persist

in the Aiyagari-Bewley model when a sufficiently high but not unrealistic unem-

ployment benefit is introduced. Furthermore, the Krusell-Smith algorithm fails to

converge in that case which confirms the failure of approximate aggregation.

Even though the two example models are standard heterogeneous agent models

in growth theory and asset pricing, the newly solutions yield interesting novel eco-

nomic implications. The first economic result emerges by comparing low and high

levels of idiosyncratic risk sharing. I find that the expected stationary distribu-

tion of individual capital in the Aiyagari-Bewley model has fatter tails, whereas,

the stationary distribution of equilibrium bond prices in the Huggett model has
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larger volatility the higher the level of idiosyncratic risk sharing. This means

that systemic risk in the equilibrium problem increases with risk sharing, a result

which recovers for these standard models what was coined the volatility paradox

in Brunnermeier and Sannikov (2014). Second, I find that sufficiently high levels

of risk sharing of idiosyncratic risk among agents amplifies aggregate risk. The

amplification effect is due to the interaction of the borrowing constraint with the

heterogeneity and thus, it is stronger in the Huggett model than in the Aiyagari-

Bewley model.

This paper relates to several strands of literature. First of all, it is clearly con-

nected to the literature on numerical algorithms. In general, there are two types of

algorithms: Local solution methods are based on perturbation techniques, whereas,

global solution methods are based on projection techniques or a mixture of pro-

jection and simulation techniques. My algorithm and the aforementioned seminal

algorithm by Krusell and Smith (1998) belong to the latter group. The algorithm

by Krusell and Smith (1998) has also been the subject of a special issue of the

Journal of Economic Dynamics and Control in January 2010. This special issue

presents various alternative algorithms which are compared in den Haan (2010).

They have in common that they rely more or less on the assumption of bounded

rationality by using a small finite number of parameters instead of the full cross-

sectional distribution to approximate the policy function and the law of motion

of aggregate variables. One problem, which is addressed by Algan et al. (2008);

Young (2010); Rı́os-Rull (1997); den Haan (1997) and summarized in Algan et al.

(2010), is the cross-sectional variation due to the simulation of a finite number of

agents in Krusell and Smith (1998) when estimating the law of motion parame-

ters. They use parametric and nonparametric procedures to get around this issue.

However, the variation due to simulating over aggregate exogenous shocks re-

mains. In contrast to the simulation approach, den Haan and Rendahl (2010) use

direct aggregation to obtain the law of motion. Interestingly, Algan et al. (2008)

and Reiter (2010a) parameterize the cross-sectional distribution itself to obtain

a better prediction of the law of motion, but their parametric functional forms

are somewhat ad hoc. They do not span the space of square-integrable random

variables. I use the algorithm by Reiter (2010a) in my numerical comparison and

find that it performs significantly worse than the algorithm proposed herein.

Local solution methods based on perturbations do not assume bounded rational-

ity. To reduce dimensionality, they first solve for the optimal policy and stationary

distribution of the model without aggregate shocks using projection methods, and

then, perturb this solution to accommodate aggregate shocks. The most promi-
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nent perturbation algorithm goes back to Reiter (2009, 2010b). Childers (2015) in-

vestigates the theoretical underpinning of these perturbations. Mertens and Judd

(2013) use perturbations for the law of motion, whereas, Boppart et al. (2018) use

MIT shocks to approximate the numerical derivatives. Winberry (2018) combines

the law of motion approach of Algan et al. (2008) with the perturbation of Reiter

(2009) to take the cross-sectional distribution into account. He also presents a

model where the aggregation result by Krusell and Smith (1998) does not hold.

There are two major drawbacks for perturbation methods: First, the perturba-

tion in aggregate shocks is often only linear, or at most quadratic. Therefore, any

higher-order nonlinear effects of aggregate shocks like risk are not accounted for.

Second, as for all perturbation methods, the solutions are only accurate for small

aggregate shocks. Crises scenarios consisting of a large aggregate shock or a long

series of aggregate shocks in one direction cannot be analyzed with confidence.

It is also worth pointing out the relation to the literature on mean field games

and their numerical solutions because they are essentially continuous-time versions

of DSGE models with ex-post heterogeneity. Achdou et al. (2017) show how to use

partial differential equations to solve heterogeneous agent models. Kaplan et al.

(2018) put forward a very interesting application of this methodology to mone-

tary policy questions. However, their models incorporate only idiosyncratic shocks

without aggregate risk. Applying generalized polynomial chaos, as in the algorithm

presented herein, to extend their framework to aggregate risk could yield interest-

ing results.

The paper proceeds as follows. In the next section, I present the two illustrative

example models. In Section 3, I introduce the algorithm and its convergence result.

Section 4 evaluates the algorithm and its approximation error numerically. In Sec-

tion 5, I investigate whether approximate aggregation holds in the example models.

Lastly, I analyze which economic insights this novel computational method yields.

The appendix contains all proofs. The online appendix contains supplementary in-

formation and robustness checks. The code and other supplementary material can

be found on https://github.com/zschorli/Proehl SolvingHeterogAgentModels.

2. EXAMPLE MODELS

To demonstrate the numerical method developed in this paper, I use two illus-

trative models featuring both idiosyncratic as well as aggregate risk. First, I use

the Aiyagari-Bewley growth model with aggregate risk from Krusell and Smith

(1998) as this model has become a benchmark test case. More specifically, I rely

on the model description in den Haan et al. (2010), which was used for a com-

https://github.com/zschorli/Proehl_SolvingHeterogAgentModels
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parison of Krusell-Smith-style algorithms in the special issue of the Journal of

Economic Dynamics and Control of January 2010. As this model is widely seen to

lack a sufficient effect of the heterogeneity on aggregate variables and to illustrate

the flexibility of my method, I additionally consider the Huggett (1993) economy

where the effect of heterogeneity turns out to be stronger. I first introduce the

general structure which is common to both models.

2.1. Generic Model Structure

Consider a discrete-time infinite-horizon models with a continuum of agents of

measure one. There are two kinds of exogenous shocks, an aggregate shock and an

idiosyncratic shock. The aggregate shock characterizes the state of the economy

with outcomes in Zag = {0, 1} standing for a bad and good state, respectively.

Similarly, the idiosyncratic shock with outcomes in Z id = {0, 1} indicates a good

or a bad shock for the individual agent. The idiosyncratic shock can be interpreted

as an agent being unemployed or employed in the Aiyagari-Bewley growth model

or as an agent receiving low or high endowment in the Huggett economy. It is

i.i.d. across agents conditional on the aggregate shock. I denote the compound

exogenous process
(
zagt , zidt

)

t≥0
by (zt)t≥0 ∈ Z with Z = Zag ×Z id. The transition

probabilities are exogenously given by a four-by-four matrix.

The market setting consists of the agents’ security claims (xt)t≥0. The aggregate

security holdings (Xt)t≥0, which are an element of the model specific market-

clearing condition, are computed by taking the mean over all agents

(1) Xt =
1∑

zid=0

∫ ∞

−∞

xdµt

(
zid, x

)
∀ t ≥ 0,

where µt is the cross-sectional distribution of idiosyncratic exogenous and endoge-

nous variables at the beginning of time t, i.e. before the agents choose their optimal

security holdings. It is simply the probability distribution of individual security

holdings across agents given the trajectory of aggregate shocks

(2) µt

(
zid, x

)
= P

({
zidt = zid

}
∩ {xt−1 ≤ x}

∣
∣ zagt , . . . , zag0

)

for all t ≥ 0, zid ∈ Z id and x ∈ R.1 The aggregate shocks cause the cross-sectional

1 Note that we can use the methodology of Fubini extension by Sun (2006) to ensure the
validity of the law of large numbers when aggregating over the set of agents. In particular,
let us denote the atomless measure space of agents by (I, I, λ) with λ(I) = 1 and the sample

probability space by (Zid, σ(Zid), pz
id|zag

). Let f be a measurable function mapping the Fubini

extension (I ×Zid, I ⊠ σ(Zid), λ⊠ pz
id|zag

) into R. If the random variables f(i, .) are essentially
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distribution to vary over time, which is indicated by the time subscript of µt.

Each agent chooses her security holdings and consumption such that they satisfy

certain constraints. First, individual consumption must be positive at all times

ct > 0, t ≥ 0, and security holdings are subject to a hard borrowing constraint

xt ≥ x̄, t ≥ 0, x̄ ≤ 0. Second, given an initial security claim x−1 ≥ x̄ and an initial

cross-sectional distribution µ−1 with non-negative support, each agent adheres to

a budget constraint, which equates individual consumption and current security

holdings to the incoming cash flows of the current period and potential savings.

(3) kt + ct = B (zt, xt−1, Xt) ∀ t ≥ 0.

The right-hand side of the budget constraint denoted by the function B is model

specific and is defined for the two example models subsequently. The time line

underlying this equation is clarified in Figure 1.2

· · · · · ·

zt−2 ⇒

µt−2, Xt−2

⇓
ct−2, xt−2

t− 1

↓

zt−1 ⇒

µt−1, Xt−1

⇓
ct−1, xt−1

t

↓

zt ⇒

µt, Xt

⇓
ct, xt

t + 1

↓

zt+1 ⇒

µt+1, Xt+1

⇓
ct+1, xt+1

Figure 1. Time line of events. Before period t, the agent observes how much of the security
everybody held in the previous period xt−1. At period t, the agent observes the exogenous shocks
zt, which also determine the beginning-of-period cross-sectional distribution µt and hence, the
aggregate holdings Xt. The agent then decides how much to consume ct and how much of the
security xt to hold in that period.

All agents have time-separable CRRA utility with a risk aversion coefficient

pairwise independent, then f(i, .) have a common distribution µ for λ-almost all i ∈ I. The same
holds for the samples f(., zid). When f represents individual security holdings, we get

X =

∫

I

x(i)dλ(i) =

1∑

zid=0

∫ ∞

−∞

xdµ
(
zid, x

)
.

2Note that I specify the time line slightly differently than den Haan et al. (2010) and Huggett
(1993). These authors substitute xt with xt+1 in the budget constraint because the security pays
out in the next period. In the Aiyagari-Bewley economy it is the capital which is put forward as
start capital to period t+1, whereas, in the Huggett economy it is the claim to a one period bond
which pays out one unit in t+1. In contrast to that notation, however, I want to emphasize the
time period, at which the agent optimally chooses the magnitude of her security holdings. Taking
this view, the optimal consumption and security holdings choice have the same time subscript.
My time line therefore indicates, which filtration the endogenous variables are adapted to.
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γ > 1 and time preference parameter β ∈ (0, 1). Then, given an agent’s initial

security claim x−1 ≥ x̄ and the initial cross-sectional distribution µ−1 with support

in [x̄,∞), the individual optimization problem reads

max
{ct,xt}∈R2

E

[
∞∑

t=0

βt c
1−γ
t − 1

1− γ

]

(4)

s.t. xt + ct = B (zt, xt−1, Xt) ∀ t ≥ 0

ct > 0, xt ≥ x̄ ∀ t ≥ 0.

In a competitive equilibrium, the individual problems are solved subject to mar-

kets clearing. This paper focuses on a competitive equilibrium of recursive form.

To define a recursive equilibrium, let us switch to prime-notation for convenience,

where a prime denotes variables in the current period and variables with no prime

refer to the previous period.

Definition 1 (Recursive equilibrium) A solution to the agents’ individual op-

timization problems (4) given an initial cross-sectional distribution of individual

capital µ−1 with non-negative support, which ensures that markets clear, is called

recursive if there exist functions gi : Z × R × P(Z id × R) → R, i ∈ {c, x}, such

that, for any point in time, the current optimal consumption and security holdings

choices equal c′ = gc(z
′, x, µ′) and x′ = gx(z

′, x, µ′) for any agent with previous-

period holdings x who observes the current-period exogenous shock z′ = (zag
′

, zid
′

)

and the beginning-of-current-period cross-sectional distribution µ′. In models where

the security is priced, there additionally exists a function gp : Z×P(Z id×R) → R

such that, for any point in time, the equilibrium price equals p′ = gp(z
′, µ′).

Remark Note that I will solely work with the investment policy x′ = gx(z
′, x, µ′)

in the following as the consumption policy follows directly due to the budget con-

straint. The subscript x is dropped for convenience, i.e., I denote x′ = g(z′, x, µ′).

In order to obtain a full description of equilibrium, we need to define a consis-

tent law of motion of µ′ to µ′′. Given a fixed distribution µ′ over the cross-section

of individual capital at the beginning of the current period and a recursive equi-

librium, the distribution changes in two steps µ′ → µ̃′ → µ′′. In the first step,

the agents implement their optimal security holdings, which leads to the end-of-

current-period distribution

(5) µ̃′
(

zid
′

, x
)

= P

({

ζ ′ = zid
′

}

∩
{

g
(

zag
′

, ζ ′, χ, µ′
)

≤ x
}∣
∣
∣ zag

′

)

,
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where (ζ ′, χ) ∼ µ′ is a random variable distributed according to the cross-sectional

distribution. In the second step, the next-period shocks z′′ for all agents realize

and shift the sizes of the agent groups identified by a particular idiosyncratic

shock realization depending on the outcome of the aggregate shock. Agents with a

previous positive shock either stay within their group, i.e., they keep being lucky,

or they now face a negative shock, the same holds for agents with a previous

negative shock. Therefore, the distribution at the beginning of the next period µ′′

is given by

µ′′
(

zid
′′

, x
)

=
∑

zid′∈Zid

p(z
ag′′ ,zid

′′

)|(zag
′

,zid
′

)

pzag
′′ |zag′

µ̃′
(

zid
′

, x
)

(6)

=
∑

zid′∈Zid

p(z
ag′′ ,zid

′′

)|(zag
′

,zid
′

)

pzag
′′ |zag′

· P
({

ζ ′ = zid
′

}

∩
{

g
(

zag
′

, ζ ′, χ, µ′
)

≤ x
}∣
∣
∣ zag

′

)

for all zid
′′

∈ Z id and x ∈ R. The multipliers in front of the end-of-current-period

distribution are the probabilities that the idiosyncratic state changes from zid
′

to

zid
′′

given the observed trajectory of zag
′

to zag
′′

. From this definition of the new

distribution, the new aggregate security holdings X ′′ follows immediately due to

(1).

2.2. The Aiyagari-Bewley Economy

The security market consists of a claim to aggregate capital (Kt)t≥0. An agent’s

share of physical capital is denoted by (kt)t≥0. For the capital market to clear, it

thus has to hold that

(7) Kt =

1∑

zid=0

∫ ∞

−∞

kdµt

(
zid, k

)
∀ t ≥ 0.

Given an initial capital holding k−1 ≥ 0 and an initial cross-sectional distribution

µ−1
3 with zero mean and nonnegative support, each agent adheres to a budget

constraint which equates individual consumption and current capital stock to pro-

ductive income and saved capital stock

(8) kt + ct = BAB (zt, kt−1, Kt) := I (zt, kt−1, Kt) + [1− ρ] kt−1 ∀ t ≥ 0.

3 The initial cross-sectional distribution µ−1 does not only imply the initial aggregate capital
K−1, but also the initial aggregate economic state as it is pinned down by the employment rate
P(zid−1 = 1|zag−1) = (1/K−1)

∫∞

0
kdµ−1 (1, k).
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The parameters in this budget constraint are defined as follows. The capital stock

brought forward from period t−1 depreciates by a rate ρ ∈ (0, 1). The productive

income is given by

I (zt, kt−1, Kt) = R (zagt , Kt) kt−1(9)

+zidt π [1− τt]W (zagt , Kt) +
[
1− zidt

]
νW (zagt , Kt) .

It is composed of, first, the return on capital stock, and second, labor income, which

equals the individual’s wage W when the agent is employed and a proportional

unemployment benefit νW otherwise. The agent’s wage is subject to a tax rate τt =

ν(1 − pet )/(πp
e
t ) whose sole purpose it is to redistribute money from the employed

to the unemployed. The parameter ν ∈ (0, 1) denotes the unemployment benefit

rate, whereas, pet = P(zidt = 1|zagt ) is the employment rate at time t and π > 0 is

a time endowment factor. It is reasonable to assume ν/π < 1 − τt ⇔ ν < πpet for

all t ≥ 0. The wage W and the rental rate R are derived from a Cobb-Douglas

production function for the consumption good

W (zagt , Kt) = (1− α) (1 + zagt a− (1− zagt )a)

[
Kt

πpet

]α

R (zagt , Kt) = α (1 + zagt a− (1− zagt )a)

[
Kt

πpet

]α−1

,

where a ∈ (0, 1) is the absolute aggregate productivity rate and α ∈ (0, 1) is the

output elasticity parameter. Labor supply is defined by the employment rate pet
scaled by the time endowment factor π.

I make the following technical assumption on the model parameters which en-

sures existence and uniqueness of a solution according to Pröhl (2018).

Assumption 2 Suppose that β(1− ρ)1−γ < 1.

The model’s parameter values used in this paper are set according to the cali-

bration of den Haan et al. (2010) and can be found in Online Appendix OA.1.1.

2.3. The Huggett Economy

The security market in this model consists of a risk-free single-period bond which

can be bought or sold for a price p and pays out one unit of the consumption good

to the buyers one period later. An agent’s asset holding is denoted by (at)t≥0.

The bond’s price at which the security market clears is indirectly defined by the

zero-net supply condition

(10) 0 =
1∑

zid=0

∫ ∞

−∞

adµt

(
zid, a

)
∀ t ≥ 0.
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Given an initial bond holding a−1 ≥ ā and an initial cross-sectional distribu-

tion µ−1 with zero mean and support in [ā,∞), each agent adheres to a budget

constraint, which equates individual consumption and the current value of bond

holdings to the agent’s current endowment and settlement of the previous period

bond holdings

(11) atpt + ct = BH (zt, at−1) := e (zt) + at−1 ∀ t ≥ 0.

The endowment e is a positive constant whose level depends on the exogenous

shock. It is higher in the good economic state and it is higher for agents with

zid = 1 compared to the other agent group. The model’s parameter values used

in this paper are set according to the calibration of a quantitative example in

Krusell et al. (2011) and can be found in Online Appendix OA.1.2.

3. THE NUMERICAL METHOD AND ITS THEORETICAL UNDERPINNINGS

There are two important aspects of solving models which combine both id-

iosyncratic as well as aggregate risk numerically. The first aspect is the iteration

procedure with which the equilibrium policy functions are computed. The dif-

ficulty here is that the equilibrium problem consists of a continuum of coupled

Euler equations which cannot be decoupled due to the aggregate risk. The cou-

pling is due to market clearing. The fact that the cross-sectional distribution and,

thus, the aggregate variables move over time in accordance with the aggregate risk

makes the decoupling of these Euler equations impossible such that they have to

be solved jointly. The problem is that standard value-function iteration cannot be

used to solve an infinite-dimensional set of coupled equations. An alternative iter-

ation procedure which does converge to the equilibrium solution has been derived

in Pröhl (2018). However, the convergence only holds for the theoretical recur-

sive policies. In this work, I extend the convergence result to discretized policies.

The second important aspect of solving these models has a similar nature as we

have to keep track of the cross-sectional distribution. The distribution space is

infinite-dimensional which yields the question of how to discretize this space and

still ensure convergence of the algorithm. Subsequently, I introduce a projection

technique for distributions for which I derive approximation error bounds ensuring

convergence.
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3.1. The Iterative Procedure

The alternative iterative method in Pröhl (2018) to handle the continuum of

coupled Euler equation does, in fact, turn out to be similar to the value-function

iteration of a specific social planner. The reason is that the continuum of coupled

Euler equations can be reduced to one generalized Euler equation which maps

random variables instead of real numbers. The value function of the social planner,

or in other words her Lagrangian, is then constructed in a way such that the social

planner’s first-order condition coincides with this generalized Euler equation. The

key to this approach is to rewrite the recursive equilibrium in terms of square-

integrable random variables, i.e., g(z′, x, µ′) = h(z′, x, χ) where χ ∼ µ.4 As the

security holdings of a single agent x are one realization of the random variable

χ, the continuum of Euler equations can be reduced by replacing x with χ in the

Euler equation of one agent. This defines the generalized Euler equation of a social

planner which I denote here by T(h).5

As in Pröhl (2018), the planner’s objective function is defined by LA : L2(Z id×

R,B(Z id × R), µ)× L2(Z id × R,B(Z id × R), µ) → [−∞,∞] where

LA (h, y; hn) = 〈T(h), h〉+
1

2λ
‖h− hn‖2(12)

+
〈
y1{λ(x̄−h)≥y}, x̄− h

〉
+

λ

2

∥
∥(x̄− h)1{λ(x̄−h)≥y}

∥
∥
2

−
1

2λ

∥
∥y1{λ(x̄−h)<y}

∥
∥
2

with 〈., .〉 denoting the inner product and ‖.‖ denoting the norm within the square-

integrable random variables. The argument y is the Lagrange multiplier to enforce

the borrowing constraint. The parameter λ > 0 determines the step size of the

iteration. Note that the objective function takes the previous guess of the optimal

policy function hn into account. With the Lagrangian as above, I now state the

algorithm to approximate the equilibrium policy function in Algorithm 1. Note

that Rockafellar (1976a) shows that the proximal point algorithm converges to

an optimal policy even if the update of the optimal consumption and individual

capital in line 5 is only approximate. This is important as the minimizer of the

Lagrangian is often not known in closed form, but can be approximated with

standard nonlinear solvers.

4 Note that χ = χ(zid
′

) is in fact a collection of conditional random variables depending on
the idiosyncratic shock. This conditional random variable can be interpreted as the collection of
individual security holdings of the set of agents facing the same idiosyncratic shock realization.
Therefore, to be more precise one can write χ(zid

′

) ∼ µ/P(zid
′

|zag
′

).
5The generalized Euler equation T(h) for the two example models is defined in Online Ap-

pendix OA.2.
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Algorithm 1 Proximal point algorithm
⊲ A Initialization

1: Set n = 0. Initialize the agents’ policy function and the Lagrange multiplier
Hn = (hn, yn).

2: Set the parameter λ > 0.
3: Set the termination criterion small τ > 0 and the initial distance larger d > τ .

⊲ B Iterative procedure

4: while d > τ do

5: Update Hn+1 by

hn+1 ≈ argmin
h

LA (h, yn; hn)

yn+1 = max
{
0, yn + λ

(
x̄− hn+1

)}

where L is defined as in (12).
6: Compute the distance d = ‖Hn+1 −Hn‖L2

P

.
7: Set n = n+ 1.
8: end while

I make the form of approximation of the policy update precise to show conver-

gence in the following theorem.

Lemma 3 (Convergence under approximate minimization6) Compute the iterate

hn+1 in Algorithm 1, line 5, as an approximate solution satisfying

ǫ2

2λ
≥ (B (z′, x,X ′)− x̄)(13)

·

∥
∥
∥
∥
T
(
hn+1

)
+

1

λ

(
hn+1 − hn

)
−
(
yn + λ

[
x̄− hn+1

])
1{λ(x̄−hn+1)≥yn}

∥
∥
∥
∥
1

for any (z′, x,X ′) ∈ Z × R2
≥x̄, where B as in (4) and T denotes the generalized

Euler equation. Then Algorithm 1 converges to the optimal policy.

Remark (i) The term inside the norm is the first-order condition correspond-

ing to the social planner’s objective LA in (12).

(ii) Equation (13) is easily implemented by any root solver using a tolerance

level of ǫ2/(2λ).

(iii) The previous theorem is stated w.r.t. the theoretical policy. However, to im-

plement the algorithm, we need to discretize the policy function. Therefore,

to obtain convergence for the discretized policies, sufficiently small discretiza-

tion error bounds are necessary. This issue is addressed in Section 3.2.

The convergence rate of Algorithm 1 is O(n−1) as is shown by Güler (1991). The

6The mathematical details are explained in Appendix A.1, which also contains the proof.
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proximal point algorithm can, however, be accelerated, which goes back to Güler

(1992). The convergence rate of the accelerated algorithm is O(n−2), which was

proven in Salzo and Villa (2012). I explain the acceleration in Online Appendix

OA.3.1.

Note that the proximal point algorithm corresponds to what is typically referred

to as an inner loop. For instance, in the Huggett economy the outer and inner

loop construction of the iteration algorithm works as follows. In the outer loop,

we search for the equilibrium bond prices, whereas, in the inner loop, we search for

the optimal policy corresponding to the current guess of the bond price. This inner

loop will be implemented as in Algorithm 1. The outer loop will be implemented

using a standard nonlinear solver. The pseudo-algorithm of the outer-inner loop

construction can be found in Online Appendix OA.3.2. In contrast, the Aiyagari-

Bewley economy does not require an outer loop. It is shown in Pröhl (2018) that

the inner loop already solves for the aggregate variables in equilibrium. The reason

is that the interest rate is defined explicitly in terms of aggregate capital due to

the optimizing firm. This simplification does not work in the Huggett economy

because the bond price is implicitly defined by the zero-net supply condition.

3.2. Discretizing the Space of Distributions

The optimal policy h depends on the conditional cross-sectional random variable

χ. Hence, we need to discretize the space of distributions to compute the optimal

policy for any possible current-period cross-sectional distribution of χ ∼ µ′. The

existing literature often resorts to using a finite number of moments to charac-

terize the cross-sectional distribution. However, even though there is a one-to-one

correspondence between a distribution and its moment-generating function, this

function does not exist for all distributions. Hence, any moment-based method

cannot span the full space of square-integrable distributions and for some mod-

els, especially the ones producing fat-tailed cross-sectional distributions, such an

approximation method is bound to fail. Another option would be a histogram rep-

resentation or a spline interpolation of the distribution, but the discretized state

space becomes very large very quickly in this case. Unfortunately, we have to rule

out projection on orthogonal polynomials, which is widely used in computational

economics as well, because a prerequisite is a sufficiently smooth distribution. Due

to the borrowing constraint, however, the cross-sectional distribution exhibits mass

points at the constraint and elsewhere. This fact is illustrated in Section OA.4 of

the Online Appendix.

There is an efficient way of approximating distributions circumventing the afore-
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mentioned problems. To do so, it is important to view the cross-sectional distri-

bution as a random variable. Instead of the polynomial projection of a c.d.f. on

the real line, I use polynomial projection in the space of square-integrable random

variables. One can interpret this approach as a probabilistic rather than a deter-

ministic polynomial projection. This technique is called polynomial chaos and is

well known in the physics and engineering literature. It is a method, which projects

a square-integrable distribution onto orthogonal polynomials which have random

variables as arguments instead of the real line. The advantage of this approach

is that it spans the whole space of square-integrable random variables and hence,

one can be sure to approximate any cross-sectional distribution sufficiently well.

This includes discrete distributions and mixtures of discrete and continuous distri-

butions. Furthermore, when the basic random variables and their corresponding

family of polynomials are chosen carefully, the speed of convergence easily out-

performs standard polynomial projection. Hence, a low order of polynomials is

enough to obtain a good approximation of the cross-sectional distribution. In the

following, I will summarize the method of polynomial chaos in general. Subse-

quently, I derive approximation error bounds which yield the convergence of this

computational approach in this paper.

3.2.1. Generalized Polynomial Chaos

The standard polynomial chaos expansion is an approach to represent random

variables by a series of polynomials mapping basic random variables into the space

of square-integrable random variables L2. Originally, this approach yields the so-

called Wiener-Hermite expansion, i.e., a projection onto Hermite polynomials,

which take Gaussians as basic random variables. The well known Cameron-Martin

theorem (see e.g., Ernst et al., 2012, Theorem 2.1) shows that this construction

spans all square-integrable random variables, which are measurable w.r.t. the basic

random variables. Xiu and Karniadakis (2002) extend this concept to sets of or-

thogonal polynomials mapping more general basic random variables, e.g., uniform,

gamma or binomial variables, into L2. The L2-convergence result for these gen-

eralized polynomial chaos expansions is proven in Ernst et al. (2012). The main

purpose of this generalization is the gain in convergence speed when the basic ran-

dom variables are chosen such that they are similar to the approximated random

variable. To summarize, given a basic random variable ξ ∈ L2 with distribution

ξ ∼ F , which has finite moments of all orders, and a set of orthogonal polynomi-

als {Φi}
∞
i=0, where i denotes the order of each polynomial, we can represent any
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random variable χ ∈ L2 with distribution χ ∼ µ by

(14) χ =

∞∑

i=0

ϕiΦi (ξ) ,

where ϕi are constant projection coefficients.

It is important to note that there is an explicit connection between the basic

random variable and the set of orthogonal polynomial used. The orthogonality

condition of the polynomials reveals this relation. For polynomials of order i, j ∈

{0, 1, . . .}, it reads

(15) 〈Φi,Φj〉 =

∫ ∞

−∞

Φi (ξ)Φj (ξ) dF (ξ) =
δij
a2i

,

where δij denotes the Kronecker symbol and ai 6= 0 are constants. One can see that

the weighting function, which defines the orthogonal polynomials, has to equal the

distribution of the basic random variable.

Once a basic random variable is fixed, we can generate the corresponding or-

thogonal polynomials by the three-term recurrence relation (see e.g., Gautschi,

1982; Zheng et al., 2015)

(16) Φi+1 (ξ) = (ξ − θi)Φi (ξ)− ωiΦi−1 (ξ) , i ∈ {0, 1, . . .},

where the starting polynomials are defined by Φ−1(ξ) = 0 and Φ0(ξ) = 1 and

θi, ωi ∈ R are constant parameters with ωi > 0. In Zheng et al. (2015), different

methods for generating polynomials are compared. Of their suggested methods,

I use the Stieltjes method, which performs well in terms of precision. It directly

computes the parameters θi and ωi in (16) using the standard inner product of L2

and is explained in detail in Gautschi (1982). The constant parameters are given

by

θi =
〈Φi, ξΦi〉

〈Φi,Φi〉
, i ∈ {0, 1, . . .}

ωi =
〈Φi,Φi〉

〈Φi−1,Φi−1〉
, i ∈ {1, 2, . . .}

with 〈., .〉 denoting the standard inner product of L2 w.r.t. the corresponding basic

distribution. The definitions of these parameters follow from inserting the three-

term recurrence relation (16) into the orthogonality condition (15).

The projection coefficients in the polynomial chaos expansion (14) are defined

as usual by ϕi = 〈χ,Φi〉/〈Φi,Φi〉 for all i ∈ {0, 1, . . .}. If χ is not a direct function
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of the basic random variable ξ, one uses the fact that both c.d.f.s µ, F ∼ U [0, 1]

are uniform to compute the coefficients

(17) ϕi =
1

〈Φi,Φi〉

∫

µ−1 ◦ F (ξ)Φi (ξ) dF (ξ) ∀ i ∈ {0, 1, . . .},

where µ−1 is the generalized inverse distribution function of χ. Hence, with the

polynomial chaos expansion, we can translate any square-integrable random vari-

able χ ∼ µ into a countable series of constant projection coefficients {ϕi}
∞
i=0. For

computational reasons, I truncate the series of projection coefficients later on.

For practical reasons, it is important to note that polynomial chaos can be

extended to multivariate distributions. First, note that a univariate random vari-

able χ ∼ µ can be approximated with multiple basic random variables. To do so,

we simply need to fix n independent basic random variables ξ1, . . . , ξJ and de-

termine their corresponding univariate orthogonal polynomials Φξ1 , . . . ,ΦξJ sepa-

rately. Then, the polynomial chaos expansion equals

(18) χ =

∞∑

i=0

ϕiΦi

(
ξ1, . . . , ξJ

)
=

∞∑

i=0

ϕi

∑

0≤i1,...,iJ≤i,
i1+...+iJ=i

Φξ1

i1

(
ξ1
)
· . . . · ΦξJ

iJ

(
ξJ
)
.

The projection coefficient is computed as in (17) for ξ = (ξ1, . . . , ξJ) which reduces

to the sum of a composition of integrals due to the independence of the basic

random variables.7 To approximate a joint distribution of m random variables

denoted by (χ1, . . . , χm) ∼ µ, we can work with the conditional random variables

χi(χ1, . . . , χi−1, χi+1, . . . , χm). Each of these conditional random variables can then

be approximated by J ≥ m independent basic random variables. Note that one

has to properly define the sigma-algebras of each χi. One can for instance choose

σ(ξi) or σ(ξ1, . . . , ξi) for χi.

When considering our model setup, we can actually separate the distributions

of exogenous and endogenous variables as the former are known. In fact, as the

exogenous variables are given, we do not need to use an approximation via polyno-

mial chaos. Instead, we can describe the idiosyncratic shock and it’s dependence

on the aggregate shock exactly by one basic random variable ξ1 and a function

zid
′

= q(zag
′

, ξ1). One possibility of defining such a function q results from a dis-

7Note that χ has to be measurable w.r.t. σ(ξ1, . . . , ξJ).
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crete distribution with three states and c.d.f.

(19) F
(
ξ1
)
=







pz
id′=0|zag

′

=1 , ξ1 = 1

pz
id′=0|zag

′

=0 , ξ1 = 2

1 , ξ1 = 3,

which yields

zid
′

= q(zag
′

, ξ1) = 1{ξ1>2−zag}.

In contrast, the distribution of security holdings χ is not known a priori and has

to be approximated by polynomial chaos. In fact, it is a conditional distribution

depending on the idiosyncratic shock χ = χ(zid
′

), i.e., separating the agent groups

with the same idiosyncratic outcome. Thus, the polynomial chaos expansion for χ

has to depend on ξ1 and can depend on further basic random variables ξ2, . . . .ξJ

as in (18). With this construction, the projection coefficients for χ can be specified

in more detail than in (17)

ϕi =
1

〈Φi,Φi〉

3∑

ξ1=1

∫ {[
µ
(
1{ξ1>2−zag}, .

)]−1
◦ F (ξ)

}

Φi (ξ) dF (ξ)

for all i ∈ {0, 1, . . .} and where ξ = (ξ1, . . . .ξJ). Let me now summarize what

the necessary steps are to approximate the space of cross-sectional distributions

χ with a polynomial chaos expansion.

Before starting the solution algorithm:

1. Determine how many basic random variables are necessary.

2. Fix the distribution of each basic random variable.8

3. For each basic random variable, generate its corresponding orthogonal

polynomials using the orthogonality condition (15) and the three-term

recurrence relation (16).

4. Compute the multivariate orthogonal polynomials by multiplying the

univariate polynomials according to (18).

During the solution algorithm:

8 Any such distribution has to possess finite moments of all orders and be determinate in
the Hamburger sense (see Ernst et al., 2012). A distribution is determinate in the Hamburger
sense if it uniquely solves the Hamburger moment problem or in other words if it is uniquely
determined by the sequence of its moments.
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5. Represent any endogenous distribution by projecting it onto the prede-

termined polynomial chaos expansion according to (17).

The details of implementing Steps 1-3 in the two example models are explained

in Online Appendix OA.5.

With the basic random variables defined and the corresponding polynomials gen-

erated, the polynomial chaos expansion is fully determined. Any square-integrable

distribution measurable w.r.t. the basic random variables can now be projected.

The polynomials with different degrees have different effects in this projection as

can be seen in Figure 2. In this figure, I consider a polynomial chaos expansion
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Figure 2. Example distributions resulting from truncated polynomial chaos ex-

pansions. The graph displays distributions resulting from the polynomial chaos expansion trun-
cated at different orders ranging from order 0 to 3. The basic random variable is denoted by ξk.
Its distribution is defined by a histogram with bin size 0.1 plotted in Figure OA-1 in the online ap-
pendix. The projection coefficients for this example are fixed at [ϕ0, . . . , ϕ3] = [36, 1, 0.01, 0.0002].

∑M
i=0 ϕiΦi(ξ

k) with fixed projection coefficients {ϕi}
M
i=0. The expansion is trun-

cated at increasing order M . The zeroth-order polynomial results in a mass point

at ϕ0, which, due to its definition, is the mean of the projected distribution. The

first-order polynomial simply stretches or compresses the distribution of the basic

random variable depending on its projection coefficient. Summing the zeroth- and

first-order term simply centers the stretched/compressed distribution of the basic

random variable around the mean of the projected distribution. Further adding

the second-order polynomial modifies the skewness of the polynomial chaos ex-

pansion, whereas, the third-order polynomial adjusts the kurtosis. Higher orders

further refine the tails. Hence, the polynomial chaos expansion gets closer to the

projected distribution the higher the order of truncation.
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3.2.2. Convergence of the Discretized Policy

When using polynomial chaos expansions for the cross-sectional distribution,

we can approximate the policy h(z′, x, χ) quite naturally because χ ∼ µ′ is fully

defined by the projection coefficients {ϕi}
∞
i=0 due to 18. To describe the optimal

policy at each realization of the random variable, we can, hence, write down the

optimal policy as h(z′, x, {ϕi}
∞
i=0) where ξ

1, . . . , ξJ are fixed. The approximation of

this policy occurs in two steps. First, we truncate the polynomial chaos expansion,

and second, we discretize all dimensions and apply the finite element method with

first-order Lagrange elements, which amounts to linear interpolation. I denote the

truncated policy by hM = h(z′, x, {ϕi}
M
i=0). Its interpolant, denoted by hM,D, is

defined on a tensor product of finite grids of the state space elements

D =
{(

ki0, ϕ0,i1 , . . . , ϕM,iM+1

)∣
∣ im = 1, . . . , Im < ∞∀m = 0, . . . ,M + 1

}
.

The question is whether Algorithm 1 converges for such a discretized policy. This

is shown in the following.

Convergence follows from a vanishing approximation error. The total policy

function approximation error is composed of two parts corresponding to the trun-

cation and interpolation error

‖h− hM,D‖L2 ≤ ‖h− hM‖L2 + ‖hM − hM,D‖L2.

The following theorem derives bounds on these two parts of the error. The bound

on the second part is a well established result from the theory on finite elements

(see e.g., Brenner and Scott, 2007), whereas, the bound on the first part is more in-

volved. To derive it, I follow the methodology of the error analysis in Babuška et al.

(2007).

Theorem 4 (Error bounds of the approximation) Consider the generic model

from Section 2.1. Assume that the income function B in the budget constraint

(3) is real analytic in the individual and aggregate security holdings and hence,

satisfies

(20)

∥
∥
∥
∥

∂p

[∂a]p
B

∥
∥
∥
∥
≤ c

p
Bp!, p ∈ {1, 2, . . .},

for some constants cB where a is a handle for x and X.9 Consider Algorithm 1 with

9It is easy to check that the budget constraints of the two example models satisfy this as-
sumption.



22

polynomial chaos expansion as in Section 3.2, i.e., using the basic random variables

ξ1, . . . , ξJ and the corresponding orthogonal polynomials Φ to project any square-

integrable cross-sectional distribution χ ∼ µ′ with χ =
∑M

i=0 ϕiΦi(ξ
1, . . . , ξJ). As-

sume that, for any fixed exogenous shock, start holdings and distribution (z′, x, µ′),

the initial guess of the holdings policy h0 and the Lagrange multiplier y0 for

the proximal point algorithm are real analytic in the basic random variables ξj,

j ∈ {1, . . . , J}. Furthermore, assume that the initial policy guess h0 is real ana-

lytic in security holdings x. Consider the following subsets of the complex plane

Σ
(
τ jn+1,Γ

j
)
=

{

x ∈ C

∣
∣
∣
∣
inf

ξj∈Γj
|x− ξj| ≤ τ jn+1

}

, j ∈ {1, . . . , J},

where Γj is the range of ξj and 0 < τ jn+1 < min(1,Ln+1)/2A
1
n+1,j < ∞. Ln+1

is the value of the second derivative of the Lagrangian LA in (12) evaluated at

the (n + 1)-th policy iterate and A1
n+1,j is given in (28) in the proof. Then, the

approximation error bound for the (n+1)-th policy iterate resulting from truncating

the polynomial chaos expansion at order M and using linear interpolation on a

rectangular tensor-product grid

D =
{
(ki0 , ϕ0,i1, . . . , ϕM,iM )| kin < kin+1

, ϕm,in < ϕm,in+1

∀ in ∈ {1, . . . , dn}, m ∈ {1, . . . ,M}}

with maximum mesh-size s is given by ResApproxImpl

‖hn+1 − hM,D‖L2 ≤
J∑

j=1

bj
2

ηj − 1
e−M log(ηj ) min(1,Ln+1)

min(1,Ln+1)− 2τ jn+1A
1
n+1,j

(21)

+ bds
2

(
M+1∑

m=0

∥
∥
∥
∥

∂2hM

[∂Dm]2

∥
∥
∥
∥

2

L2

) 1

2

,

where bj, j ∈ {1, . . . , J, d}, are constants and

ηj =
2τ jn+1

|Γj|
+

√

1 +
4(τ jn+1)

2

|Γj|2
> 1, j ∈ {1, . . . , J}.

Remark (i) The theorem implies that the error from the truncation of the

polynomial chaos expansion decreases exponentially when increasing the or-

der of the expansion. Furthermore, the error from the interpolation decreases

proportionately with the mesh size of the discretization.

(ii) Combining Theorem 4 on the error bounds and Lemma 3 on the approxi-
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mate minimization results in the convergence of Algorithm 1 with discretized

policies. Assume that one implements the nonlinear solver in a way such that

the approximate minimization in (13) holds strictly. Then, it is easy to see

that, due to the continuity of the right-hand side of (13) in hn+1, one can

find a discretization of hn+1 which satisfies (13) as well. According to (21),

one simply has to choose a fine enough mesh size s and a high enough ap-

proximation order M .

(iii) With this proof of convergence, the algorithm is a valid approximation of

the rational expectations equilibrium and thus, can be seen as a benchmark

for numerical solutions resulting from methods incorporating bounded ra-

tionality.

3.3. Alternative Solution Method

The proximal point algorithm described in Section 3.1 is similar to value func-

tion iteration as it solves a separate optimization problem in each iterative step.

Hence, this procedure is expected to be demanding in terms of computational

time. In practice, many researchers use policy function iteration which was first

described in Coleman (1990) instead of value function iteration for this reason.

Li and Stachurski (2014) show that policy function iteration of the agent’s prob-

lem converges when keeping the aggregate variables fixed. Extending those results

to the general equilibrium setup here lies beyond the scope of this paper. However,

I do compare policy function iteration and the proximal point algorithm both with

polynomial chaos numerically in the following. Note that this also serves as an il-

lustration that the method to discretize the distribution space is versatile and can

be combined with various iterative procedures.

4. NUMERICAL EVALUATION OF THE COMPUTATIONAL METHOD

In the following, I show that the theoretical results from the previous section are

confirmed numerically. I solely present the results for the Aiyagari-Bewley model

with aggregate risk as it is the benchmark model for computational methods for

this model type and because the results for the Huggett economy with aggregate

risk are qualitatively the same. I report them in Online Appendix OA.6.2.

Using Matlab R2016b, I compute the recursive equilibrium solution of the ac-

celerated proximal point algorithm explained in Online Appendix OA.3.1 as well

as the solution resulting from policy function iteration both in combination with

polynomial chaos truncated at different orders.10 For comparison, I also compute

10The computations were performed on the Baobab cluster at the University of Geneva. The
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the solutions of existing algorithms. I choose the algorithm by Krusell and Smith

(1998) as it is the most prominent existing method. I use its Matlab implementa-

tion by Maliar et al. (2010). Furthermore, there has been an effort to improve on

this original algorithm in a special issue of the Journal of Economic Dynamics and

Control in January 2010. From these more recent methods, I use the backward

induction algorithm by Reiter (2010a) and the explicit aggregation algorithm by

den Haan and Rendahl (2010), both implemented in Matlab, as they perform best

in the comparison by den Haan (2010).

To ensure comparability, I run all these methods using the same grid for indi-

vidual capital and the same termination criterion 5e-5. Additionally, I configure

the discretizations of the cross-sectional distribution so that they are as close as

possible. The Krusell-Smith and the Reiter method use total aggregate capital,

whereas, the den Haan-Rendahl algorithm uses the aggregate capital of the unem-

ployed and employed. In the proximal point algorithm as well as the policy function

iteration, the total aggregate capital is equivalent to the projection coefficient φ0

of the polynomial chaos expansion. I use 4 grid points for aggregate capital for

the Krusell-Smith, the Reiter and the polynomial chaos based algorithms. Note

that the Haan-Rendahl algorithm then has 4 × 4 grid points in aggregate capi-

tal because it differentiates unemployed and employed aggregate capital. Keep in

mind that the proximal point algorithm has additional dimensions to discretize

the cross-sectional distribution depending on the order of truncation. The different

methods are summarized in Table 1. Note that the proximal point algorithm and

the policy function iteration is implemented with parallelized Matlab code run on

an HPC cluster, whereas, the other three algorithms are implemented with serial

code run on a desktop computer. This is the reason for the differences in the num-

ber of CPUs used. Comparing the proximal point algorithm with policy function

iteration, the compute time is higher for the former algorithm. This is mainly due

to the fact that it solves a full optimization problem in each iteration to ensure

convergence for a model with unbounded utility function. Hence, if one can ensure

that policy function iteration converges, then this should be the method of choice.

If convergence of a faster ad hoc method is not clear, one can use the proximal

point algorithm as a benchmark.

In the following, I investigate whether the algorithms using polynomial chaos

expansions really yield higher precision than the existing methods. One way of

comparing these sets of numerical solutions is to analyze their Euler equation

errors. There have been two different Euler equation error tests put forward in

code can be found in the supplementary material. Instructions to reproduce the results are given
in Section OA.8 of the Online Appendix.
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Algorithm # Grid Points # CPUs Compute
for z′ × k × µ Time

Krusell-Smith (K-S) 4× 80× 04 4 53s
Reiter (R) 4× 80× 04 4 2m 59s
den Haan-Rendahl (D-R) 4× 80× 16 4 22s

Proximal Point Algorithm M=0 (PPA0) 4× 80× 04 20 24s
Proximal Point Algorithm M=1 (PPA1) 4× 80× 12 20 31s
Proximal Point Algorithm M=2 (PPA2) 4× 80× 24 20 1m
Proximal Point Algorithm M=3 (PPA3) 4× 80× 48 20 1m 49s

Policy Function Iteration M=0 (PFI0) 4× 80× 04 20 6s
Policy Function Iteration M=1 (PFI1) 4× 80× 12 20 8s
Policy Function Iteration M=2 (PFI2) 4× 80× 24 20 13s
Policy Function Iteration M=3 (PFI3) 4× 80× 48 20 18s

Table 1. Summary of the algorithms to be compared. In the first column, M denotes
the order of truncation of the polynomial chaos expansion. The abbreviation in the parenthesis
is the algorithm identifier used in the comparison analysis, which follows. The second column
displays the total number of grid points to discretize the policy function. Note that the methods
of discretizing the distribution µ vary across algorithms. If the distribution is discretized with
several parameters, the number of grid points is the product of the number of grid points in each
parameter.

the literature (see e.g., den Haan, 2010), the standard Euler equation error test

and the dynamic Euler equation error test. The standard Euler equation errors are

calculated by comparing the numerical solution for optimal consumption c against

the explicitly calculated conditional expectation in the Euler equation denoted by

c̃. It is the absolute percentage error11

ǫSE =
|c− c̃|

c̃
.

In contrast to the standard Euler equation error, the dynamic equivalent denoted

by ǫDE is computed for several consecutive periods. This test is more stringent

as the numerical solution and the explicit conditional expectation usually diverge

with more periods. I compute the standard and the dynamic Euler equation error

for a random sample of aggregate shocks over 3000 periods for the different numer-

ical solutions from Table 1. Note that I compute the standard Euler Equation error

test also over multiple periods, but it is reset every period and hence, does not ac-

cumulate. The errors’ summary statistics are given in Online Appendix OA.6.1.1.

They indicate that the polynomial chaos based algorithms are advantageous. This

advantage can be visualized better by displaying the full error distribution in terms

of boxplots in Figure 3. One can see that the existing algorithms produce much

11It is also sensible to look at the error without taking the absolute value as systematic biases
can be identified more easily this way. This analysis can be found in Online Appendix OA.6.1.2.
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Figure 3. Boxplots of the Euler equation error distributions of individual capital.

Panel A shows the standard Euler equation error and Panel B displays the dynamic Euler
equation error for the numerical solutions from Table 1. The error is computed over a finer grid
in the dimension of individual capital than the grid on which the solutions are computed. I
compute the error for a random sample of aggregate shocks over 3000 periods. The initial cross-
sectional distribution is the same for all algorithms. The red lines mark the medians, whereas, the
blue boxes denote the 25th to 75th percentiles. The whiskers indicate the range of the distribution
and the red dots outside are outliers.

wider error distributions for both the standard and the dynamic Euler equation

error. It is interesting to observe that the Reiter algorithm, although improving

on the extreme points of the error distribution, does not lead to any improvement

w.r.t. the width of the error distribution compared to the Krusell-Smith algorithm.

The same is true for the den Haan-Rendahl method, which performs much worse.

It seems that the reason why they performed well in the comparison by den Haan

(2010) is that they use considerably more grid points, whereas here, I deliber-

ately run all methods on the same discretization. In comparison, all polynomial

chaos based solutions produce much narrower error bands. This is mainly due to

the better anticipation of the cross-sectional distribution’s law of motion in the

polynomial chaos algorithms.

It seems counter-intuitive that the error distributions for the algorithms based

on polynomial chaos do not differ much. One would expect that they decrease

with increasing order. To understand why, recall that the approximation error

bound in (21) consists of two terms. A decrease in error due to the increase in

the truncation order of the polynomial chaos might be offset by an increase in

the interpolation error. Note that even though I use the same interpolation grid

for all algorithms, the interpolation error may still differ as it depends on the

curvature of the solution. The higher the curvature, the higher the interpolation

error. Therefore, we need to disentangle the truncation error from the interpolation

error. This is possible by comparing the prediction of the next-period aggregate

capital by the algorithmK with the true next-period aggregate capital K̃. I display
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the law of motion error, computed by

ǫLoM =
K − K̃

K̃
,

in Figure 4. I exclude the den Haan-Rendahl algorithm because it already performs

K-S PPA0 PPA1 PPA2 PPA3 PFI0 PFI1 PFI2 PFI3
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Figure 4. Boxplots of the law of motion error distributions of aggregate capital.

This figure shows the low of motion error ǫLoM produced by the Krusell-Smith algorithm and the
polynomial chaos algorithms from Table 1. The red lines mark the medians, whereas, the blue
boxes denote the 25th to 75th percentiles. The whiskers indicate the range of the distribution
and the red dots outside are outliers.

worse than the others in terms of the Euler equation errors. I also exclude the

Reiter algorithm because it was not possible to extract the prediction of next-

period aggregate capital from Reiter’s Matlab implementation. The figure shows

that, indeed, the law of motion error becomes smaller when the truncation order

is increased. In particular, we observe an exponential decrease as predicted by

the error bound. Furthermore, the law of motion error is within the region of

the truncation criterion when truncating at second or higher order. This indicates

that a polynomial chaos expansion up to second order yields sufficient precision

for the standard calibration of the Aiyagari-Bewley economy described in Online

Appendix OA.1.1.

Overall, the error analysis shows that the polynomial chaos based algorithms

outperform the existing algorithms and that the polynomial chaos expansion up

to second order suffices to approximate the growth model. Recall that order zero

implies that the optimal policies depend solely on aggregate capital. Order one

and higher, however, imply a dependance on the full approximated distribution.

Hence, to approximate the rational expectations equilibrium of the growth model
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sufficiently, the agents need to know more than the aggregate capital. However, a

crude approximation of the cross-sectional distribution seems to be enough.

5. APPROXIMATE AGGREGATION REVISITED

As shown in the previous section, using polynomial chaos to approximate the

cross-sectional distributions seems to imply that the first moment is not enough to

achieve a satisfactory level of precision in the numerical solution of the Aiyagari-

Bewley model. Looking at this result superficially, it seems to contrast the ap-

proximate aggregation result by Krusell and Smith (1998). However, this result is

simply due to the higher sensitivity of the polynomial chaos approximation w.r.t.

changes in the cross-sectional distribution. Evaluating aggregation requires a more

in-depth analysis of the model’s stationary cross-sectional distribution.

I cannot compute the full stationary state distribution for this model though, as

it is a distribution of distributions P(z′, k, µ). However, I can consider the expected

conditional cross-sectional distribution Eµ(P(z′, k|µ)), which essentially represents

the average stationary cross-sectional distribution. It is computed as a fixed point

of the cross-sectional distribution’s law of motion (6) and displayed in Figure 5.

As the Euler equation errors for the den Haan-Rendahl algorithm are large, I will
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Figure 5. Average cross-sectional distributions produced by the Krusell-Smith,

Reiter and the polynomial chaos algorithms from Table 1. This graph displays the av-
erage stationary cross-sectional distribution, i.e., the expectation of the stationary distribution
of the state space (z′, k, µ) conditional on µ. It displays histogram approximations of the distri-
butions with bin size 0.1. Panel A compares the p.d.f.s of the Krusell-Smith algorithm using the
first moment, the Reiter algorithm and the proximal point algorithm using polynomial chaos.
Panel B compares the benchmark proximal point algorithm truncated at second order with the
Krusell Smith algorithm using multiple moments.

compare the polynomial chaos algorithms12 only to the Krusell-Smith and the

12Note that only the proximal point algorithms are considered because policy function itera-
tion produces the same solutions.
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Reiter algorithm. The largest conceptual difference between these algorithms is

that the Krusell-Smith method assumes bounded rationality in terms of a rule

of thumb, i.e., a parametric law of motion for the aggregate variables depending

on a finite number of moments. The polynomial chaos based algorithms, however,

use the nonparametric law of motion of the aggregate variables stemming from

the cross-sectional distribution. The Reiter algorithm lies conceptually in between

the former two. It maps the set of moments to a parameterized cross-sectional

distribution rather than a rule of thumb to compute the prediction for aggregate

variables. We can see that the distributions of the proximal point algorithm with

different orders of truncation are almost indistinguishable. They are further to

the right than the distribution of the Krusell-Smith algorithm. As expected, the

distribution of the Reiter algorithm lies in between the former. Panel B serves as

a robustness check. It displays the solutions of the Krusell-Smith algorithm with

several moments. As the number of moments increases, the distributions also seem

to converge. However, they do not converge to the distribution produced by the

proximal point algorithm. The fact that the distributions of the different proximal

point algorithms are so close explains the approximate aggregation result from

Krusell and Smith (1998). In terms of stationary distributions, higher orders do

not matter in this calibration of the growth model.13

An interesting question remains. When does approximate aggregation fail? To

answer that question, I do not even have to consider a different model but only

change one parameter. I keep the parameters of Online Appendix OA.1.1 except

for the unemployment benefit rate ν which is adjusted from 15% to 65%.14 There-

fore, the higher unemployment insurance leads to more redistribution in the new

calibration and hence, better risk sharing. The precision results for this calibra-

tion are qualitatively the same as for the benchmark calibration and can be found

in Online Appendix OA.6.3. That approximate aggregation does not hold in this

calibration becomes clear when considering the stationary distributions in Fig-

ure 6. The stationary distribution for polynomial chaos truncated at first order

is not plotted as it did not converge. It shows that a rough approximation of the

cross-sectional distribution does not suffice to solve the model. This anomaly is

remedied by truncating at higher order where the expected stationary distribution

stabilizes quickly. Given it’s methodology, it is not surprising that the distribution

13 The change in the average stationary distribution when truncating the polynomial chaos
expansion at different orders can also serve as an evaluation criterion on when to stop increasing
the order of the approximation. Online Appendix OA.6.1.3 describes the details.

14This figure does in fact correspond to the 2015 OECD median of the net replacement rate in
the initial unemployment phase of an average-wage household with two children and one earner
(see http://www.oecd.org/els/benefits-and-wages-statistics.htm).



30

0 20 40 60 80 100

individual capital k

0

0.5

1

1.5

2

2.5

3

pr
ob

ab
ili

ty

10-3 Panel A

K-S
R

PPA 0 th order

PPA 2nd order

PPA 3 rd order

PPA 4 th order

0 20 40 60 80 100

individual capital k

0

0.005

0.01

0.015

0.02

0.025

pr
ob

ab
ili

ty

Panel B

PPA 3 rd order
K-S 1 moment
K-S 2 moments
K-S 3 moments

Figure 6. Average cross-sectional distributions produced by the Krusell-Smith

algorithm and the polynomial chaos algorithms from Table 1. This graph displays the
average stationary cross-sectional distribution, i.e., the expectation of the stationary distribu-
tion of the state space (z′, k, µ) conditional on µ for 65 % unemployment benefit rate. It plots
histogram approximations of the distributions with bin size 0.1. Panel A compares the p.d.f.s of
the Krusell-Smith algorithm using the first moment, the Reiter algorithm and the proximal point
algorithm using polynomial chaos. Panel B compares the benchmark proximal point algorithm
truncated at third order with the Krusell Smith algorithm using multiple moments.

from Reiter’s method is closer to ours than to Krusell-Smith’s distribution which

exhibits much fatter tails compared to the distributions induced by the polynomial

chaos based algorithms. More importantly, Panel B shows that the Krusell-Smith

method does not converge for this calibration when the number of moments is

increased which exemplifies that approximate aggregation fails in this calibration.

Another example where approximate aggregation does not hold is the Huggett

economy with aggregate risk. The expected stationary cross-sectional distributions

of asset holdings are displayed in Figure 7. The truncation of the polynomial chaos

at order zero is not plotted as this polynomial always equals to zero in equilibrium

and thus, does not contain any information about the cross-sectional distribution.

We can see that the largest change in the average stationary distribution occurs

with the first and second-order approximations, but third and fourth-order ap-

proximations are very close. This is confirmed when zooming into the left tail,

i.e., the area where mass points occur in the distribution. Note that the budget

constraint in this model has a much larger effect than in the Aiyagari-Bewley

economy as a larger share of the population is close to hitting the constraint.

6. ECONOMIC INSIGHTS

As the polynomial chaos based algorithm’s convergence is theoretically founded,

its solution represents indeed an approximation of the rational expectations equi-

librium. Furthermore, the convergence was illustrated numerically even in models
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Figure 7. Average cross-sectional distributions produced by the polynomial chaos

algorithms from Table OA-5. This graph displays the average stationary cross-sectional dis-
tribution, i.e., the expectation of the stationary distribution of the state space (z′, a, µ) condi-
tional on µ. It displays histogram approximations of the distributions. Panel A compares the
p.d.f.s of the proximal point algorithm using polynomial chaos truncated at different orders.
Panel B zooms into the left tail of the average cross-sectional distributions.

where approximate aggregation is lacking and the Krusell-Smith algorithm fails.

Hence, we can be confident in deriving economic implications from these numerical

solutions. Just considering the two standard models the Aiyagari-Bewley economy

and the Huggett economy both with aggregate risk, two novel economic implica-

tions arise. First, the risk within the model increases when risk sharing increases

and second, the amplification of the aggregate risk due to the heterogeneity is

stronger when there is more risk sharing. The details of these two results are ex-

plained in the following. Both results can be found in both models but to keep the

main text concise, I illustrate the first result within the Aiyagari-Bewley model

and the second result within the Huggett economy. The respective missing results

can be found in Online Appendix OA.7.1. Furthermore, I show that these results

are robust to changes in the model parameters in Online Appendix OA.7.2.

6.1. The Volatility Paradox

In the Aiyagari-Bewley model, the amount of risk sharing varies with the un-

employment insurance. Agent share the idiosyncratic risk more intensively if em-

ployed agents pay a higher contribution to increase the unemployment benefit

rate. I compute the solution to the model for various unemployment benefit rates

and report the corresponding expected stationary cross-sectional distributions in

Figure 8.15 One can see that the expected ergodic distribution has fatter tails the

15The supplementary material contains videos for the cases of ν = 15% and ν = 65% which
show how the cross-sectional capital distribution evolves in a simulation over 3000 periods.
It starts from the stationary distribution of the model without aggregate risk. One can observe
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Figure 8. Average cross-sectional distributions produced by the polynomial chaos

algorithm for different levels of the unemployment benefit. This graph displays the
average stationary cross-sectional distribution, i.e., the expectation of the stationary distribution
of the state space (z′, k, µ) conditional on µ for different unemployment benefit rates ν. The
proximal point algorithm for up to 15% unemployment benefit is truncated at first order, whereas,
the proximal point algorithm for higher benefits is truncated at second order.

higher the unemployment benefit rate. Moreover, the mode of the distributions

corresponding to higher unemployment benefit rates lie further to the right than

for low benefits. Since the expected stationary cross-sectional distribution can be

interpreted as the probability distribution of one agent’s individual capital over

the infinite time horizon, the higher volatility and fatter tails can be interpreted

as higher systemic risk in the model where agents share idiosyncratic risk more

intensively.

This result is puzzling at first but can be explained when considering the differ-

ent reasons for holding capital. First, it can be used for precautionary savings and

second, it can be used purely as an investment object. The precautionary savings

motive can be satisfied by either building up one’s own capital savings or con-

tributing to the unemployment insurance which is funded by a redistributive tax

on employed agents. In the model with a high unemployment insurance, the poor

employed agents will satisfy the precautionary savings motive mainly through the

insurance as this is a mandatory payment. Due to the higher tax, they have a

lower savings rate as the same agent in the model with a low insurance level. This

explains the shift to the left of the cross-sectional distribution’s mode. The fat

tail on the other hand can be explained by the investment motive. Recall that,

due to the Cobb-Douglas production function, equilibrium returns are good when

how the distribution does converge in expectation towards the respective stationary distributions
displayed in Figure 8.
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aggregate capital savings are low or moderate. The lower savings rate of the poor

employed agents affects the aggregate capital negatively which, in turn, affects

the equilibrium rental rate on capital positively. Hence, capital is an attractive

investment object for rich agents. With a decent rental rate they prefer saving

capital for later to consuming today resulting in a fatter right tail. It may be

tempting to conclude that the redistributive social policy only has the negative

effect of increasing inequality in capital holdings. However, it does also increase

consumption especially on the lower end of the distribution. 16

This result on the shifted tails of the cross-sectional capital distribution mirrors

the volatility paradox in Brunnermeier and Sannikov (2014). In their paper, they

analyze a model with two types of agents who face aggregate risk and find that

low-risk environments where idiosyncratic risk is better hedged are conductive of

greater systemic risk. The reason that the setup herein is comparable is the follow-

ing. The cross-sectional distribution in our model at any particular point in time

is just a screenshot of the economic state across agents at that point. However,

the expected stationary cross-sectional distribution over the infinite time horizon

represents all states an agent may reach over the infinite time horizon and their re-

spective probabilities. The volatility of this distribution can, hence, be interpreted

as the volatility of the individual capital holdings of each agent over time. This

interpretation does confirm the volatility paradox of Brunnermeier and Sannikov

(2014) in the Aiyagari-Bewley economy with aggregate risk

6.2. Amplification of Aggregate Risk due to Heterogeneity

Due to the computational issues, the literature on heterogeneous-agent models

has so far often limited itself to models which solely feature idiosyncratic risk.

Therefore, there is scope to further investigate the interaction between idiosyn-

cratic and aggregate risk. This section serves as an illustration that the algorithm

introduced in this paper provides the possibility to do so. In the following, I show

that idiosyncratic and aggregate risk do indeed interact and amplify each other

in the Huggett economy with aggregate risk.17 I compare bond prices correspond-

ing to the expected stationary distribution across different borrowing constraints

16A similar observation has been made in Krueger et al. (2016), Section 6.3, who show that
savings of poor agents are lower and consumption is higher when there is higher unemployment
insurance. However, in their work, they only document the shifts within the left side of the
distribution. They do not reach any conclusions on the right side of the distribution.

17 Due to the computational difficulty, the question of how the interaction between idiosyn-
cratic risk and aggregate risk affects asset prices has not been answered yet. Huggett (1993)
investigates the effect of idiosyncratic risk on asset prices but does not look at aggregate risk.
Krusell et al. (2011) consider aggregate risk in addition to idiosyncratic risk but limit themselves
to a borrowing constraint at ā = 0 and, therefore, an autarkic economy without trade.
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and model configurations in Table 2. First consider the Huggett economy without

Borrowing No Aggregate Risk Aggregate Risk
Constraint ā bad good average bad good

-0.5 1.0440 1.0161 1.0855 0.9787 1.1922
-1.0 1.0247 1.0111 1.0782 0.9786 1.1778
-1.5 1.0149 1.0080 1.0637 0.9703 1.1570
-2.0 1.0099 1.0057 1.0505 0.9612 1.1397
-2.5 1.0063 1.0039 1.0404 0.9514 1.1294

Table 2. Equilibrium prices corresponding to the average stationary cross-

sectional distributions for various levels of the borrowing constraint. This graph dis-
plays the prices corresponding to the average stationary cross-sectional distribution, i.e., the
expectation of the stationary distribution of the state space (z′, a, µ) conditional on µ. It com-
pares the model without aggregate risk which is either fixed to the bad or good state, respectively,
and the model with aggregate risk where the prices are conditional on the aggregate state.

aggregate risk. In this case, the agent’s endowment is shifted up and down solely

by the idiosyncratic risk but not by aggregate risk. I compute two versions of the

model without aggregate risk fixing the aggregate shock at the bad and the good

state, respectively. This produces two equilibria with different stationary cross-

sectional distributions and corresponding prices. One can see that the equilibrium

prices are higher in the bad state. The reason for this is that the average level

of the income process is lower in the bad state and thus, the average marginal

propensity to consume is higher. This increases the precautionary savings motive

for the agents and results in higher demand. Furthermore, tightening the borrow-

ing constraint from ā = −2.5 to ā = −0.5 increases the price level in both cases

which is in line with the existing literature.18 With these two different steady

states, one could then try to approximate aggregate shocks by looking at an MIT

shock and computing the transition between the two steady states. As it arises

deterministically, this transition is typically rather smooth.

The question which remains is how these different steady states compare to

the model with aggregate risk. To investigate this question, I compute the sta-

tionary state distribution of the model with aggregate risk. As before, this dis-

18A further interesting observation is that the prices are above one for all model configurations
without aggregate risk. This implies that agents with high income are willing to pay a fee to
store wealth for future consumption due to their precautionary savings motive. On the opposite
side, agents with low income are willing to sell the bond to increase their current consumption.
However, they ask for a premium to pay for the risk of hitting the borrowing constraint in the
next period which would limit their future consumption. This result is not entirely surprising as it
somewhat mirrors the willingness of investors to accept negative interest rates on safe government
bonds like Germany or Switzerland in recent years. The price level is heavily influenced by the
discount factor in the model. A lower discount factor leads to lower price levels as impatient
agents have a lower precautionary savings motive and thus, demand for the bond is reduced.
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tribution is a distribution of distributions. Hence, I compute the expected con-

ditional state distribution given that the economy is in a particular aggregate

state Eµ(P(z′, a|µ, zag
′

)). I also compute the equilibrium price corresponding to

this conditional distribution. In the bad aggregate state, the equilibrium price is

lower than the one of both model configurations without aggregate risk. In the

good state, on the contrary, it is higher. Hence, the price levels corresponding

to a particular aggregate outcome in the model with aggregate risk are reversed

compared to the model without aggregate risk. Furthermore, the average price

level over both states is higher than in the model without aggregate risk. The

increased average price level can be explained by considering the distribution of

the income process of the model with aggregate risk. Even though the income

level in the model with aggregate risk is the average of the income levels of the

model without aggregate risk, the variance shifts nonlinearly. It is higher than

the average of the variances of the models without aggregate risk. This leads to

an on average stronger precautionary savings motive in the model with aggregate

risk. There is more demand for the bond on average which results in the higher

equilibrium price level. However, this does not explain the different price levels

when conditioning on the aggregate shock outcome. This is due to the borrowing

constraint amplifying the impact of aggregate risk. Given that the economy is in a

bad state, the impact of the borrowing constraint on agents with low endowment

is less severe because their ability to pay back debt in the next period is increased

due to the higher expected next-period income compared to the model without

aggregate risk fixed at the bad state. Therefore, these agents have a higher ability

to borrow which increases the supply of the bond and lowers the price compared

to the model without aggregate risk. This effect is so strong that the price is even

lower than in the model without aggregate risk fixed at the good economic state.

The mechanism is mirrored for the equilibrium price conditional on the economy

being in the good state. In that case, the borrowing constraint has a much stronger

grip on the agents with low income as their ability to pay back debt is decreased

due to the lower expected next-period income. This leads to a decrease in supply

and an increase in the price. The effect is so strong that the agents who want

to buy the bond are willing to pay a significant fee for storing their wealth. The

disparity between the prices in the two aggregate states illustrates the forces at

play. In the good state, the demand for storing wealth from agents with high in-

come is much stronger than for consuming future income when agents have low

endowment. Thus, the bond buyers pay a fee to invest to give an incentive to

other agents to sell. On the contrary, the supply in the bad state is much higher
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than the demand which results in a price lower than one. The agents with low

endowment who want to consume future wealth today are willing to pay an in-

terest rate to incentivize other agents to buy the bond. Overall, aggregate risk is

clearly amplified through the combination of ex-post heterogeneity and borrowing

constraints. The amplification effect is stronger in the Huggett economy than in

the Aiyagari-Bewley economy as the borrowing constraint affects a larger share of

the population.19 Accordingly, amplification is observed across all computed levels

of the borrowing constraint in the Huggett economy, whereas, it is observed only

for sufficiently high levels of risk sharing in the Aiyagari-Bewley economy.

7. CONCLUSIONS

The contribution of this paper is a theoretically founded numerical method to

globally solve general equilibrium models with both idiosyncratic as well as ag-

gregate risk. Solving this type of models is challenging because the cross-sectional

distribution of agent-specific variables becomes a time-varying element of the state

space. What sets my algorithm apart from existing methods is that, rather than ap-

proximating the law of motion of aggregate variables with a more or less parametric

formula, it approximates the cross-sectional distribution of individual variables. I

use a projection technique which extends orthogonal polynomial projection from

spaces of smooth functions to the space of square-integrable random variables.

This technique is known as generalized polynomial chaos and can be interpreted

as a probabilistic polynomial projection method. Most importantly, I show that

the algorithm using this discretization converges to the theoretical rational expec-

tations equilibrium.

From a practical perspective, the algorithm developed in this paper increases

the precision of the solution by a significant amount when compared to existing

approaches, especially in terms of the law of motion of aggregate variables. Fur-

thermore, I illustrate that it can be readily applied to models where approximate

aggregation does not hold. The first example is rather surprising. I show that

approximate aggregation and thus, the widely used Krusell-Smith algorithm fails

when high levels of risk sharing are introduced in the Aiyagari-Bewley model with

aggregate risk. The second example model I choose for illustrative purposes is the

Huggett economy with aggregate risk. Even in these two cases where approximate

aggregation does not hold, my algorithm performs well according to the theoretical

19The supplementary material contains videos which show how the cross-sectional bond hold-
ings distribution evolves in a simulation over 3000 periods for the cases ā = −1.5 and ā = −0.5.
It starts from the stationary distribution of the model without aggregate risk. One can see that
the bond holding distribution contracts in good periods and expands in bad periods. In bad
periods, there is a sizable fraction of agents for whom the constraint binds.
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convergence result. Furthermore, the more precise numerical solutions of these two

standard models yield two novel economic insights. First, systemic risk in equilib-

rium increases with higher levels of idiosyncratic risk sharing. This result emerges

in the Aiyagari-Bewley economy through fatter tails in the expected stationary

capital distribution and, in the Huggett economy, through higher volatility in the

stationary distribution of equilibrium bond prices. Second, sufficiently high levels

of idiosyncratic risk sharing among agents facing borrowing constraints amplifies

aggregate risk. This result follows from the large discrepancy between the global

solution of the model with idiosyncratic and aggregate risk and the solution of the

model without aggregate risk at various steady states.

APPENDIX A: PROOFS

A.1. Proof of Lemma 3

It is shown in Pröhl (2018) that Algorithm 1 converges to the optimal policy

when the policy update in line 5 is exact. However,Rockafellar (1976a) shows

that the proximal point algorithm converges to an optimum of the Lagrangian

even if the update of the optimal policy is only approximate. Salzo and Villa

(2012) extend this result to different concepts of approximation. Before I define

which kind of approximation applies in this work, let me recall some important

terminology first. Starting with the generalized Euler equation T(h), it is shown in

Pröhl (2018) that iterating on the Euler equation’s resolvent (T+Id)−1(h), where

Id denotes the identity operator, converges to the optimal policy. To construct the

resolvent, we need the Langrangian associated with the Euler equation meaning

that this Lagrangian’s first-order condition coincides with the Euler equation T.

This Lagrangian turns out to be

(22) L (h, y) = 〈T(h), h〉+ 〈y, x̄− h〉 ,

where y is the Lagrange multiplier enforcing the borrowing constraint. According

to Rockafellar (1976b) and Pröhl (2018), the resolvent of the Euler equation is

equal to minimizing the planner’s objective LA in (12).

Definition 5 (Resolvent approximation20) Let C be a Hilbert space over R.

Consider the resolvent (Id + λTL)
−1(c) of an operator λTL associated with a

20 This definition corresponds to the type 2 approximation with ǫ-precision in Salzo and Villa
(2012). Note that the approximation operator is an approximate subdifferential operator. This
is the case because I minimize the controls for fixed Lagrange multipliers rather than computing
a minimax problem immediately in Algorithm 1.
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saddle function L at c ∈ C with λ > 0. The approximation with ǫ-precision of this

resolvent at c ∈ C is defined as c̃ ∈
(

Id+ λT
ǫ2/(2λ)
L

)−1

(c) where

T
ǫ2/(2λ)
L (c) =

{

v

∣
∣
∣
∣
L(c)− L(c̃) + 〈c̃− c, v〉 ≤

ǫ2

2λ
∀c̃ ∈ C

}

.

It is denoted by c̃ ≈ (Id+ λTL)
−1(c).

Proof of Lemma 3: Generally, convergence of the proximal point algorithm

is well established as explained above. It remains to show that the approximate

policy update in Algorithm 1 for the models in this paper satisfies Definition 5.

As maxh∈H(h
n+1 − h) = hn+1 − x̄ ≤ B(z′, x,X ′)− x̄, equation (13) implies that

〈hn+1 − h,∇L̃
(
hn+1, yn; z′, k, hn

)
− v〉 ≤

ǫ2

2λ
, ∀h ∈ H,

where

L̃
(
hn+1, yn; hn

)
=LA

(
hn+1, yn; hn

)
−

1

2λ
‖h− hn‖2

v =
1

λ

(
hn − hn+1

)

with LA as in (12) and ∇ denoting the gradient w.r.t. h. Adding a zero and

applying the definition of the gradient (or more generally, an element of the sub-

differential) then implies

[

L̃
(
hn+1, yn; hn

)
− L̃ (h, yn; hn)

]

−
[

L̃
(
hn+1, yn; hn

)
− L̃ (h, yn; hn)

]

+ 〈h− hn+1, v −∇L̃
(
hn+1, yn; hn

)
〉 ≤

ǫ2

2λ

⇒







L̃ (hn+1, yn; hn)− L̃ (h, yn; hn) + 〈h− hn+1, v〉 ≤ ǫ2

2λ

L̃ (hn+1, yn; hn)− L̃ (h, yn; hn) + 〈h− hn+1,∇L̃ (hn+1, yn; hn)〉 ≤ 0
(23)

for all h ∈ H. Using the update of yn+1 in Algorithm 1, it follows that L̃(h, yn; hn) =

L(h, yn+1)− λ/2‖(x̄− h)1{λ(x̄−h)≥yn}‖
2 and ∇L̃(., yn; hn) = ∇L(., yn+1) with L as

in (22). Inserting this into (23) and applying the definition of the gradient of L

leads to

(24) L
(
hn+1, yn+1

)
− L

(
h, yn+1

)
+ 〈h− hn+1, v〉 ≤

ǫ2

2λ
.

Hence, we have that v ∈ T
ǫ2/(2λ)
L (hn+1), which concludes the proof as hn+1 ∈
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(

Id+ λT
ǫ2/(2λ)
L

)−1

(hn). Q.E.D.

A.2. Proof of Theorem 4

In order to prove Theorem 4, I first need to establish that any iterate of the op-

timal policy hn+1, n ≥ 0, as computed in the proximal point algorithm is analytic

in the basic random variables ξ1, . . . , ξJ , i.e. there exist constants chn+1,j such that

∥
∥Dp

jh
n+1
∥
∥ ≤ c

p
hn+1,jp!, p ∈ {1, 2, . . .}, j ∈ {1, . . . , J},

where the p-th derivative is denoted by Dp
j = ∂p/∂pξj. Before I show analytic-

ity, let me specify how the policy depends on the basic random variables. In the

discretization of the optimal security holdings policy, I impose a grid on the exoge-

nous shocks, the initial individual holdings and the projection coefficients. Hence,

at each grid point of h(z′, x, {ϕi}
M
i=0), the states z

′, the individual holdings and the

projection coefficients are fixed. Due to the definition of the projection coefficient

ϕ0, this means that the current aggregate security holdings X ′ = ϕ0 is also fixed.

However, the policy implicitly depends on the basic random variables through the

Euler equation because it contains the next-period aggregate security holdings

X ′′ =

3∑

ξ1=1

∫ ∞

−∞

h
(

zag
′

,1{ξ1>2−zag′}, χ, {ϕi}
M
i=0

)

dF
(
ξ1, . . . , ξJ

)
,

where

χ =

M∑

i=0

ϕiΦi

(
ξ1, . . . , ξJ

)

is a function of the basic random variables. Therefore, the savings policy is a

function of (ξ1, . . . , ξJ) as well.

Proposition 6 (Analytic policies) Under the assumptions of Theorem 4, all

iterates of the the savings policy and the Lagrange multipliers as functions of

ξ1, . . . , ξJ admit analytic extensions in the complex plane, namely in the region

Σ
(
τ jn+1,Γ

j
)
, j ∈ {1, . . . , J}, given in Theorem 4. Furthermore, it holds that the

(n + 1)-th policy iterate

max
ξ̃∈Σ(τ jn+1

,Γj)

∣
∣
∣hn+1

(

ξ̃
)∣
∣
∣ ≤

min(1,Ln+1)

min(1,Ln+1)− 2τ jn+1A
1
n+1,j

.

is bounded in the region Σ
(
τ jn+1,Γ

j
)
, j ∈ {1, . . . , J}.
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Proof: The proof now proceeds in two steps. First, I establish that all iterates

of the policy and hence, Lagrange multipliers are real analytic functions of the

basic random variables. Second, I construct the complex analytic extension.

Real analytic: Equation (13) implies that the (n + 1)-th iterate of the sav-

ings policy hn+1 in the proximal point algorithm solves the following first-order

condition

(25) (B(z′, x, ϕ0)− x̄)
∂

∂hn+1
LA
(
hn+1, yn; hn

)
= e

for a.e. (z′, x) with constant ‖e‖ ≤ ǫ2

2λ
. Now, let us take the derivatives of the first-

order condition (25) w.r.t. ξj, j ∈ {1, . . . , J}. It is obvious that B and e do not

depend on the basic random variables. The partial derivative of the augmented

Lagrangian, however, does due to its dependence on X ′′ and because the optimal

policies and hence, also the Lagrange multipliers depend on (ξ1, . . . , ξJ) as can be

seen in

∂

∂hn+1
LA
(
hn+1, yn; hn

)
(26)

=
∂

∂c
u
(
B(z′, x, ϕ0)− hn+1

)

−β
∑

z′′∈Z

{

pz
′′|z′ ∂

∂x
B(z′′, hn+1, X ′′)

∂

∂c
u
(

B(z′′, hn+1, X ′′)− h(n+1)′
)}

+
1

λ

(
hn+1 − hn

)
−
(
yn + λ

[
x̄− hn+1

])
1{λ(x̄−hn+1)≥yn}.

I now investigate the derivatives of (25) w.r.t. the basic random variable ξj, j ∈

{1, . . . , J}. Trivially,

Dp
j

(
∂

∂hn+1
LA

)

= 0, p ∈ {1, 2, . . .}.

It follows for p = 1 that

∂2LA

∂hn+1∂X ′′
D1

jX
′′ +

∂2LA

[∂hn+1]2
D1

jh
n+1 −

1

λ
D1

jh
n − 1{λ(x̄−hn+1)≥yn}D

1
jy

n = 0

and thus,

(27)

Dp−1
j

(
∂2LA

∂hn+1∂X ′′
D1

jX
′′ +

∂2LA

[∂hn+1]2
D1

jh
n+1

)

=
1

λ
Dp

jh
n+1{λ(x̄−hn+1)≥yn}D

p
j y

n.

Let us first analyze the derivative ofX ′′. It is easy to see fromD1
jX

′′ = ∂/∂χX ′′D1
jχ
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that all derivatives of X ′′ are composed of the derivatives of the optimal policy

w.r.t. start capital and the derivatives of χ w.r.t. the basic random variables. The

latter component is obviously analytic. Hence, X ′′ is analytic in the basic random

variables if the optimal policy is analytic in start capital. This fact is easily es-

tablished by induction when taking derivatives of the first-order condition w.r.t. x

and taking into account that h0 is analytic in x. I exploit the fact that products,

sums and compositions of analytic functions are analytic. Hence, there is a cX,j

such that
∥
∥Dp

jX
′′
∥
∥ ≤ c

p
X,jp!, p ∈ {1, 2, . . .}.

Furthermore, note that it follows from (26) that ∂/∂hn+1LA is analytic in X ′′ and

hn+1.

I can now show analyticity of the optimal policy by induction in two dimensions:

First increasing the iterate of the policy n → n + 1, then increasing the order of

the derivative p − 1 → p. Assume that all iterates hj, j ≤ n, are analytic and

that the derivatives of hn+1 w.r.t. the basic random variables up to order p − 1

are bounded as required for analyticity. This implies that the derivatives w.r.t.

X ′′ and hn+1 of the first-order condition also satisfy the analyticity condition up

to order p − 1 with coefficients cLA
X
,j and cLA

h
,j. W.l.o.g., choose cLA

X
,j ≥ cLA

h
,j.

Applying the product rule, I rewrite (27) as

∂2LA

[∂hn+1]2
Dp

jh
n+1 =

1

λ
Dp

jh
n + 1{λ(x̄−hn+1)≥yn}D

p
jy

n

−

p−1
∑

l=0

(
p− 1

l

)

Dp−l
j X ′′Dl

j

(
∂2LA

∂hn+1∂X ′′

)

−

p−1
∑

l=1

(
p− 1

l

)

Dp−l
j hn+1Dl

j

(
∂2LA

[∂hn+1]2

)

.

Dividing by p!, taking norms and denoting Rp
n+1,j = ‖Dp

jh
n+1‖/p! leads to

∂2LA

[∂hn+1]2
︸ ︷︷ ︸
=:Ln+1

Rp
n+1,j ≤

1

λ
c
p
hn,j + 1{λ(x̄−hn+1)≥yn}c

p
yn,j +

p−1
∑

l=0

c
p−l
X,jc

l
LA
X
,j

+

p−1
∑

l=1

Rp−l
n+1,jc

l
LA
h
,j
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≤
1

λ
c
p
hn,j + 1{λ(x̄−hn+1)≥yn}c

p
yn,j +max

(

2cX,j, 2cLA
X
,j

)p

︸ ︷︷ ︸

=:Ap
n+1,j

(28)

+

p−1
∑

l=1

Rp−l
n+1,jc

l
LA
h
,j.

Note that, due to convexity, Ln+1 > 0. Solving this recursion yields

Rp
n+1,j ≤

Ap
n+1,j

Ln+1
+

p−1
∑

l=0

Ap−1−l
n+1,j

Ln+1
2lcl+1

LA
h

≤ 2p
Ap

n+1,j

Ln+1
≤

(
2A1

n+1,j

min(1,Ln+1)

)p

,

where A0 = ‖e‖/X . Hence, I obtain a uniform bound for all derivatives of the

optimal policy. Analyticity follows by induction.

Complex continuation: I define the following power series for the (n+ 1)-th

iterate in terms of the basic random variable ξj, j ∈ {1, . . . , J}, on the complex

plane

hn+1
(

ξ̃
)

=
∞∑

p=0

(

ξ̃ − ξj
)p

p!
Dp

jh
n+1.

Taking norms leads to

∣
∣
∣hn+1

(

ξ̃
)∣
∣
∣ =

∞∑

p=0

(∣
∣
∣ξ̃ − ξj

∣
∣
∣

2A1
n+1,j

min(1,Ln+1)

)p

.

This series converges for all |ξ̃ − ξj| ≤ τ jn+1 <
min(1,Ln+1)

2A1
n+1,j

such that

∣
∣
∣hn+1

(

ξ̃
)∣
∣
∣ ≤

min(1,Ln+1)

min(1,Ln+1)− 2τ jn+1A
1
n+1,j

.

Therefore, by continuation the iterates can be extended analytically in the whole

region Σ(τ jn+1,Γ
j), which concludes the proof. Q.E.D.

Remark Note that I follow the proof of Theorem 4.1 in Babuška et al. (2007)

with bounded range of the basic random variables for the proof of Theorem 4

below. I use bounded range since I choose a histogram approximation of the basic

random variables. For other types of approximation, one might need to mod-

ify the error bound estimates to accommodate an unbounded range. I refer to

Babuška et al. (2007) for that case.
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Proof of Theorem 4: The last term of the bound is the interpolation error

from tensor-product finite elements of order 1 on a rectangular discretization D.

It is well established (see e.g., Brenner and Scott, 2007, Theorem 4.6.14). The er-

ror bound due to truncation of the polynomial chaos expansion is a little more

involved. Due to the fact that the continuous functions of the basic random vari-

ables are a subset of the square-integrable functions, i.e., C0(Γj) ⊂ L2(Γj), we

have that the truncation error is bounded by the best approximation error (see

Babuška et al., 2007, Lemma 4.3)

∥
∥h− hM

∥
∥
L2 ≤ b inf

w∈HM
‖h− w‖C0 ,

where constant b is independent of the order of truncationM . Given that h admits

an analytic extension on the complex plane Σ(τ jn+1,Γ
j), the best approximation

error is bounded by (see Babuška et al., 2007, Lemma 4.4)

inf
w∈HM

‖h− w‖C0(Γj) ≤
2

ηj − 1
e−M log(ηj ) max

ξ̃∈Σ(τ jn+1
,Γj)

∣
∣
∣hn+1

(

ξ̃
)∣
∣
∣ , j ∈ {1, . . . , J},

where

ηj =
2τ jn+1

|Γj|
+

√

1 +
4(τ jn+1)

2

|Γj|2
> 1.

Combining this with Proposition 6 and keeping in mind that I truncate once for

each ξj leads to the truncation error bound. Q.E.D.
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