Coordinating Monetary and Financial Regulatory Policies

Alejandro Van der Ghote

European Central Bank

May 2018

3rd Annual ECB Macroprudential Policy and Research Conference

The views expressed on this discussion are my own and do not necessarily reflect those of the European Central Bank

What I do

Study coordination between monetary and macro-prudential policies $\mathsf{Emphasis} \to \mathsf{coordination}$ throughout the economic cycle

What I do

Study coordination between monetary and macro-prudential policies $\mathsf{Emphasis} \to \mathsf{coordination}$ throughout the economic cycle

How I do it

What I do

Study coordination between monetary and macro-prudential policies Emphasis \to coordination throughout the economic cycle

How I do it

 ${\color{red} \textbf{Model:}} \ \ \textbf{New} \ \ \textbf{Keynesian} \ \ \textbf{framework} + \ \textbf{Balance-sheets} \ \ \textbf{fluctuations}$

What I do

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

What I do

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

Main results

What I do

Study coordination between monetary and macro-prudential policies Emphasis \rightarrow coordination throughout the economic cycle

How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

Main results

Trad. MoPo \to mimic natural rate of return MacroPru \to replicate constrained eff. policy of flexible price econ.

What I do

Study coordination between monetary and macro-prudential policies $\underline{\sf Emphasis} \to {\sf coordination}$ throughout the economic cycle

How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw <u>traditional</u> and <u>coordinated</u> mandates

Main results

- Trad. MoPo \rightarrow mimic natural rate of return MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.
- Coor. MoPo \rightarrow deviate from natural rate of return MacroPru \rightarrow soften relative to traditional mandate

What I do

Study coordination between monetary and macro-prudential policies Emphasis → coordination throughout the economic cycle

How I do it

Model: New Keynesian framework + Balance-sheets fluctuations Policy exercise: Contrast btw traditional and coordinated mandates

Main results

- Trad. MoPo → mimic natural rate of return MacroPru → replicate constrained eff. policy of flexible price econ.
- Coor. MoPo → deviate from natural rate of return $MacroPru \rightarrow soften relative to traditional mandate$
 - SW Coordinated \succ Traditional by 0.07% annual consumption equivalent

Model economy → 2 building blocks

- Model economy → 2 building blocks
- Nominal price stickiness
 - Firms adjust their nominal price infrequently → Calvo (1983)

- Model economy → 2 building blocks
- I. Nominal price stickiness
 - Firms adjust their nominal price infrequently → Calvo (1983)
- II. Financial intermediation and the macroeconomy
 - Financial intermediaries good at providing financing to firms, but subject to financing constraints (due to moral hazard prob.)
 - → Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)

- Model economy → 2 building blocks
- I. Nominal price stickiness
 - \circ Firms adjust their nominal price infrequently \rightarrow Calvo (1983)
- II. Financial intermediation and the macroeconomy
 - Financial intermediaries good at providing financing to firms, but subject to financing constraints (due to moral hazard prob.)
 - → Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)
 - Model economy → competitive equilibrium

- Model economy → 2 building blocks
- I. Nominal price stickiness
 - Firms adjust their nominal price infrequently → Calvo (1983)
- II. Financial intermediation and the macroeconomy
 - Financial intermediaries good at providing financing to firms, but subject to financing constraints (due to moral hazard prob.)
 - ightarrow Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)
 - Model economy → competitive equilibrium
 - Identify sources of inefficiency. Define mandates for policy

- Model economy → 2 building blocks
- I. Nominal price stickiness
 - Firms adjust their nominal price infrequently → Calvo (1983)
- II. Financial intermediation and the macroeconomy
 - Financial intermediaries good at providing financing to firms, but subject to financing constraints (due to moral hazard prob.)
 - ightarrow Brunnermeier and Sannikov (2014), Gertler and Karadi/Kiyotaki (2010)
 - Model economy → competitive equilibrium
 - Identify sources of inefficiency. Define mandates for policy
 - ullet Policy exercise o contrast btw traditional and coordinated mandates

Firms

Firms produce intermediate goods out of labor and capital services

$$y_{j,t} = A_t I_{j,t}^{\alpha} k_{j,t}^{1-\alpha}$$
 with $j \in [0,1]$

 $A_t \rightarrow$ evolves locally stochastically, $dA_t/A_t = \mu_A dt + \sigma_A dZ_t$

Firms

Firms produce intermediate goods out of labor and capital services

$$y_{j,t} = A_t I_{j,t}^{\alpha} k_{j,t}^{1-\alpha}$$
 with $j \in [0,1]$

 $A_t \rightarrow$ evolves locally stochastically, $dA_t/A_t = \mu_A dt + \sigma_A dZ_t$

CES aggregator transforms intermediate goods into final cons. good

$$y_t = \left[\int_0^1 y_{j,t}^{rac{arepsilon-1}{arepsilon}} dj
ight]^{rac{arepsilon}{arepsilon-1}} \quad ext{with } arepsilon > 1$$

Van der Ghote (European Central Bank) Monetary and Financial Regulatory Policies

Firms

Firms produce intermediate goods out of <u>labor</u> and capital services

$$y_{j,t} = A_t I_{j,t}^{\alpha} k_{j,t}^{1-\alpha}$$
 with $j \in [0,1]$

 $A_t \rightarrow$ evolves locally stochastically, $dA_t/A_t = \mu_A dt + \sigma_A dZ_t$

CES aggregator transforms intermediate goods into final cons. good

$$y_t = \left[\int_0^1 y_{j,t}^{rac{arepsilon-1}{arepsilon}} dj
ight]^{rac{arepsilon}{arepsilon-1}} \quad ext{with } arepsilon > 1$$

• Firms reset nominal price $p_{j,t}$ sluggishly according to Calvo (1983) \Rightarrow agg. price level $p_t = \left[\int_0^1 p_{j,t}^{1-\varepsilon} dj\right]^{\frac{1}{1-\varepsilon}}$ evolves locally deterministically, $dp_t/p_t = \pi_t dt + 0 dZ_t$

• Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_t > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{k_{f,t},b_t} E_t \int_t^{\infty} \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
,

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{k_{f,t},b_t} E_t \int_t^{\infty} \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
,

$$q_t \bar{k}_{f,t} = b_t + n_{f,t}$$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{k_{f,t},b_t} E_t \int_t^{\infty} \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
,

$$\begin{aligned} &\text{BC} & q_t \bar{k}_{f,t} = b_t + n_{f,t} \\ &\text{FC1} & q_t \bar{k}_{f,t} \leq \lambda V_t \implies q_t \bar{k}_{f,t} \leq \lambda v_t n_{f,t} \end{aligned}$$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{k_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

$$\begin{array}{ll} \mathsf{BC} & q_t \bar{k}_{f,t} = b_t + n_{f,t} \\ \mathsf{FC1} & q_t \bar{k}_{f,t} \leq \lambda V_t \implies q_t \bar{k}_{f,t} \leq \lambda v_t n_{f,t} \\ \mathsf{FC2} & q_t \bar{k}_{f,t} \leq \Phi_t n_{f,t} \end{array}$$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{k_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

BC
$$q_t \bar{k}_{f,t} = b_t + n_{f,t}$$
FC1
$$q_t \bar{k}_{f,t} \leq \lambda V_t \implies q_t \bar{k}_{f,t} \leq \lambda v_t n_{f,t}$$
FC2
$$q_t \bar{k}_{f,t} \leq \Phi_t n_{f,t}$$
LOM
$$dn_{f,t} = [a_f r_{k,t} dt + dq_t] \bar{k}_{f,t} - (i_t - \pi_t) b_t dt$$

- Fin. intermediaries and households provide capital services to firms, $k_t = a\bar{k}_t$, with $a_f > a_h \rightarrow$ fin. intermediaries better than households
- Fin. intermediaries maximize their franchise value

$$V_t \equiv \max_{k_{f,t},b_t} E_t \int_t^\infty \gamma e^{\gamma(s-t)} \frac{\Lambda_s}{\Lambda_t} n_{f,s} ds$$
 ,

subject to...

$$\begin{array}{ll} \text{BC} & q_t \bar{k}_{f,t} = b_t + n_{f,t} \\ \\ \text{FC1} & q_t \bar{k}_{f,t} \leq \lambda V_t \implies q_t \bar{k}_{f,t} \leq \lambda v_t n_{f,t} \\ \\ \text{FC2} & q_t \bar{k}_{f,t} \leq \Phi_t n_{f,t} \\ \\ \text{LoM} & dn_{f,t} = \left[\underbrace{a_f r_{k,t} dt + dq_t} \right] \bar{k}_{f,t} - \left(i_t - \pi_t \right) b_t dt \end{array}$$

ullet Households o consume c_t , supply labor l_t , and invest in $-b_t$, $ar{k}_{h,t}$

• Standard definition. Physical capital in fixed supply: $\bar{k}_{h,t} + \bar{k}_{f,t} = \bar{k}$

- ullet Standard definition. Physical capital in fixed supply: $ar{k}_{h\,t}+ar{k}_{f\,t}=ar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds \iff min $\{\lambda v_t, \Phi_t\}$ $n_{f,t} < q_t \bar{k}$

- ullet Standard definition. Physical capital in fixed supply: $ar{k}_{h\,t}+ar{k}_{f\,t}=ar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \{\lambda v_t, \Phi_t\} n_{f,t}$ occasionally binds binds \iff min $\{\lambda v_t, \Phi_t\}$ $n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t = +\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic

- ullet Standard definition. Physical capital in fixed supply: $ar{k}_{h,t}+ar{k}_{f,t}=ar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \left\{ \lambda v_t, \Phi_t \right\} n_{f,t}$ occasionally binds binds $\iff \min \left\{ \lambda v_t, \Phi_t \right\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t=+\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t I_t^{\alpha} \bar{k}^{1-\alpha}$, with...

- ullet Standard definition. Physical capital in fixed supply: $ar{k}_{h,t}+ar{k}_{f,t}=ar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \left\{ \lambda v_t, \Phi_t \right\} n_{f,t}$ occasionally binds binds $\iff \min \left\{ \lambda v_t, \Phi_t \right\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t=+\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t I_t^{\alpha} \bar{k}^{1-\alpha}$, with... $\zeta_t \equiv a_t^{1-\alpha}/\omega_t$, $a_t \bar{k} \equiv a_h \bar{k}_{h,t} + a_f \bar{k}_{f,t}$, and $\omega_t y_t \equiv \int_0^1 y_{j,t} dj$

- ullet Standard definition. Physical capital in fixed supply: $ar{k}_{h,t} + ar{k}_{f,t} = ar{k}$
- R1 Leverage constraint $q_t \bar{k}_{f,t} \leq \min \left\{ \lambda v_t, \Phi_t \right\} n_{f,t}$ occasionally binds binds $\iff \min \left\{ \lambda v_t, \Phi_t \right\} n_{f,t} < q_t \bar{k}$
- R2 If $\Phi_t=+\infty$, competitive equilibrium is constrained-inefficient Pecuniary externalities: distributive, binding-constraint, and dynamic
- R3 Aggregate production function $\rightarrow y_t = \zeta_t A_t l_t^{\alpha} \bar{k}^{1-\alpha}$, with... $\zeta_t \equiv a_t^{1-\alpha}/\omega_t$, $a_t \bar{k} \equiv a_h \bar{k}_{h,t} + a_f \bar{k}_{f,t}$, and $\omega_t y_t \equiv \int_0^1 y_{j,t} dj$
- SW Utility flows are:

$$(1-\alpha)\ln a_t + \ln\frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} + \ln A_t + (1-\alpha) \ln \bar k$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト 9 Q (^

Traditional Mandate

Traditional Mandate

laPru
$$\max_{\Phi_t}\left\{ rac{\textit{E}_0}{\Phi_t} \int_0^\infty e^{-
ho t} \left(1-lpha
ight) \ln a_t dt, ext{ subject to CE \& } i_t
ight\}$$

Traditional Mandate

MaPru
$$\max_{\Phi_t}\left\{ rac{ extsf{\textit{E}}_0}{0} \int_0^\infty e^{-
ho t} \left(1-lpha
ight) \ln a_t dt, ext{ subject to CE \& } i_t
ight\}$$

MoPo
$$\max_{i_t} \left\{ \underbrace{\textit{E}_0} \int_0^\infty e^{-\rho t} \left[\ln \frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} \right] dt, \text{ subj. to CE \& } \Phi_t \right\}$$

Traditional Mandate

ullet Separate objectives and no cooperation o Nash equilibrium (NE)

MaPru
$$\max_{\Phi_t} \left\{ \frac{\textit{\textbf{E}}_0}{0} \int_0^\infty e^{-\rho t} \left(1 - \alpha\right) \ln \textit{\textbf{a}}_t dt, \text{ subject to CE \& } i_t \right\}$$

MoPo
$$\max_{i_t} \left\{ \underbrace{\textit{E}_0}_{0} \int_0^\infty e^{-\rho t} \left[\ln \frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} \right] dt$$
, subj. to CE & $\Phi_t \right\}$

! Policy has commitment. Policy rules are designed at t=0

Traditional Mandate

MaPru
$$\max_{\Phi_t} \left\{ \frac{\textit{E}_0}{0} \int_0^\infty e^{-\rho t} \left(1 - \alpha\right) \ln a_t dt, \text{ subject to CE \& } i_t \right\}$$

MoPo
$$\max_{i_t} \left\{ \underbrace{\textit{E}_0}_{0} \int_0^\infty e^{-\rho t} \left[\ln \frac{1}{\omega_t} + \alpha \ln I_t - \chi \frac{1}{1+\psi} I_t^{1+\psi} \right] dt$$
, subj. to CE & $\Phi_t \right\}$

- ! Policy has commitment. Policy rules are designed at t=0
- NE $i_t o$ mimic natural rate of return $\Longrightarrow \pi_t = 0$, $\omega_t = 1$, $I_t = I_*$

Traditional Mandate

- ullet Separate objectives and no cooperation o Nash equilibrium (NE)
- MaPru $\max_{\Phi_t} \left\{ \frac{E_0}{0} \int_0^\infty e^{-\rho t} \left(1 \alpha\right) \ln a_t dt, \text{ subject to CE & } i_t \right\}$
- MoPo $\max_{i_t} \left\{ E_0 \int_0^\infty e^{-\rho t} \left[\ln \frac{1}{\omega_t} + \alpha \ln I_t \chi \frac{1}{1+\psi} I_t^{1+\psi} \right] dt$, subj. to CE & $\Phi_t \right\}$
 - ! Policy has commitment. Policy rules are designed at t=0
 - NE $i_t \to \text{mimic natural rate of return} \implies \pi_t = 0, \ \omega_t = 1, \ l_t = l_*$ $\Phi_t \to \text{replicate constrained efficient policy of flex. price econ.} \implies$

Macro-prudential Policy in Flexible Price Economy

Benefits

- o ↓distributive externality [Fig. 1] ↑binding-constraint externality [Fig. 2]
- \circ \downarrow co-movement btw a_t and intermediary wealth share
- o shift invariant distribution rightward [both Figs., RHS]

Policy Exercise (cont.)

Coordinated Mandate

 $\max_{i_t,\Phi_t} \left\{ \underline{E_0} \int_0^\infty e^{-\rho t} \left[(1-\alpha) \ln a_t + \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right], \text{ s.t. CE} \right\}$

Policy Exercise (cont.)

Coordinated Mandate

 $\max_{i_t,\Phi_t} \left\{ \textcolor{red}{E_0} \int_0^\infty e^{-\rho t} \left[(1-\alpha) \ln a_t + \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right], \text{ s.t. CE} \right\}$

Optimal policy

Policy Exercise (cont.)

Coordinated Mandate

 $\max_{l_t,\Phi_t} \left\{ \frac{\textbf{\textit{E}}_0}{\int_0^\infty e^{-\rho t}} \left[(1-\alpha) \ln a_t + \ln \frac{1}{\omega_t} + \alpha \ln l_t - \chi \frac{1}{1+\psi} l_t^{1+\psi} \right] \text{, s.t. CE} \right\}$

Optimal policy

• $a_f \frac{r_{k,t}}{q_t} dt + \frac{dq_t}{q_t} - (i_t - \pi_t) dt$, with $q_t \to PDV$ of $r_{k,t}$

Contrast between Traditional and Coordinated Mandates Quantitative Analysis

Baseline calibration

Parameter Values

a_h	λ	γ	μ_A	σ_{A}	α	ε	θ In $2^{6/5}$	ρ	ψ	χ
70%	2.5	10%	1.5%	3.5%	65%	2	$\ln 2^{6/5}$	2%	3	2.8

Contrast between Traditional and Coordinated Mandates Quantitative Analysis

Baseline calibration

Parameter Values

a _h	λ	γ	μ_A	σ_A	α	ε	θ In $2^{6/5}$	ρ	ψ	χ
70%	2.5	10%	1.5%	3.5%	65%	2	$\ln 2^{6/3}$	2%	3	2.8

Social welfare gains in annual consumption equivalent

Coordinated Mandate over Traditional Mandate

	Present Discounted Value of					
	$\ln \frac{1}{\omega}$	In $I^{lpha} - \chi rac{I^{1+\psi}}{1+\psi}$	In a^{1-lpha}	Ut. Flows		
Baseline calibration	-0.04%	-0.00%	+0.11%			
but with $a_h = 60\%$	-0.05%	-0.01%	+0.15%	+0.09%		
but with $ heta=\ln 2^{4/5}$	-0.06%	-0.01%	+0.20%	+0.13%		
but with $arepsilon=4$	-0.05%	-0.00%	+0.07%	+0.02%		
	1					

Conclusion

Traditional Mandate

MoPo → mimic natural rate of return

 $MacroPru \rightarrow replicate constrained eff. policy of flexible price econ.$

Coordinated Mandate

MoPo → deviate from natural rate of return

MacroPru → soften relative to traditional mandate

Social Welfare Gains

 $\underline{\text{Coordinated}} \succ \underline{\text{Traditional}}$ by 0.07% annual consumption equivalent