Markets, Banks and Shadow Banks

David Martinez-Miera

Rafael Repullo

UC3M and CEPR

CEMFI and **CEPR**

ECB Macroprudential Policy and Research Conference Frankfurt, 17 May 2018

Motivation

"While higher capital and liquidity requirements on banks will no doubt help to insulate banks from the consequences of large shocks, the danger is that they will also drive a larger share of intermediation into the shadow banking realm."

Hanson, Kashyap, and Stein (2011)

Introduction

- Main issues to be addressed
 - → What is the difference between banks and shadow banks?
 - → How regulation affects funding through these channels?
 - → How shadow banks affect effectiveness of regulation?
- Goal is to construct a model to shed light on
 - → Effect of regulation on structure & risk of financial system
 - → Regulatory tradeoffs

What are shadow banks?

- Financial Stability Board
 - → "Global Shadow Banking Monitoring Reports"
- Broad definition
 - "Credit intermediation involving entities and activities outside of the regular banking system."
- Narrow measure
 - → Activity-based approach based on five economic functions

Narrow measure of shadow banking

Monitoring aggregates

USD trillion at end-2016 Exhibit 0-1

Economic function #1

- Management of collective investment vehicles
 - \rightarrow Fixed income funds (30%)
 - → Mixed (equity and credit) funds (19%)
 - \rightarrow Money market funds (16%)
 - → Credit hedge funds (13%)
- Common feature of these institutions
 - → Actively select (screen) assets included in their portfolios

Economic function #2

- Lending dependent on short-term funding
 - → Finance companies (81%)
 - \rightarrow Consumer credit (7%)
 - \rightarrow Leasing companies (5%)
 - \rightarrow Real estate credit companies (4%)
- Common feature of these institutions
 - → Actively select (screen) loan applicants

Our approach

- Focus on two dimensions: screening and regulation
 - → Whether lenders screen borrowers
 - → Whether lenders comply with capital regulation
- Three funding modes
 - → Borrowers not screened by intermediary: **market finance**
 - → Borrowers screened by intermediary (bank)
 - + Bank chooses to be regulated: **regulated banks**
 - + Bank chooses not to be regulated: shadow banks

Assumptions on bank capital (i)

- Bank capital is costly but provides "skin in the game"
 - → Commitment device for screening borrowers
 - → Reduces the cost of (uninsured) debt
- Bank capital has to be certified
 - → Given incentives to save on costly equity

Assumptions on bank capital (ii)

- Complying with regulation implies certification
 - → Novel role for banking supervision
- Not complying with regulation requires private certification
 - → Higher cost of capital

The emergence of shadow banks (i)

- Trade-off between costs and benefits of public certification
 - → If bank capital regulation is very tough
 - → Banks may prefer not to comply with regulation
 - → And resort to more expensive private certification

The emergence of shadow banks (ii)

- Alternative setup based on costs and benefits of deposit insurance
 - → If bank capital regulation is very tough
 - → Banks may prefer to give up (underpriced) deposit insurance
 - → And resort to more expensive uninsured funding
- Similar qualitative results
 - \rightarrow In the paper: not for today!

Overview

- Model setup
- Equilibrium
 - → Model with no capital requirements
 - → Flat capital requirements (Basel I)
 - → Value-at-Risk capital requirements (Basel II)
- Optimal capital requirements
- Extensions
- Concluding remarks

Part 1 Model setup

Model setup

- Two dates (t = 0, 1)
- Agents: → Set of potential **entrepreneurs**
 - → Set of risk-neutral **banks**
 - → Set of risk-neutral **investors**
- Entrepreneurs have projects that require outside finance
- Banks raise funds by issuing uninsured debt and equity capital

Entrepreneurs

- Continuum of entrepreneurs of observable types $p \in [0,1]$
- Each entrepreneur of type p has risky project

Unit investment
$$\rightarrow$$
 Return =
$$\begin{cases} A(x_p), & \text{with prob. } 1 - p + s_p \\ 0, & \text{with prob. } p - s_p \end{cases}$$

- $\rightarrow s_p \in [0, p]$ is the screening intensity of lending bank
- $\rightarrow x_p$ is the aggregate investment of entrepreneurs of type p
- \rightarrow Success return $A(x_p)$ is decreasing in x_p

Bank screening

- Screening is not observed by debtholders
 - → Moral hazard problem
- Screening entails cost

$$c(s_p) = \frac{\gamma}{2} (s_p)^2$$
, with $\gamma > 0$

Investors

- Two types of risk-neutral investors
 - → Debtholders: require expected return normalized to 0
 - \rightarrow Shareholders: require expected return $\delta > 0$ (cost of capital)

Competition assumptions

- Large set of potential entrepreneurs for each type p (free entry)
 - \rightarrow Success return $A(x_p)$ equals loan rate R_p
- Loan market is contestable (limit pricing)
 - → Equilibrium loan rate is lowest feasible rate

Correlation assumptions

- Bank specialization
 - \rightarrow Each bank only lends to a single type p of entrepreneurs
 - → To avoid modelling correlation/diversification across types
- Returns of entrepreneurs of type p are perfectly correlated
 - → Portfolio return coincides with single project return
 - → Loans' prob. of default = Banks' prob. of failure

Bank capital certification

- Bank capital has to be certified
 - → Otherwise shareholders could lever up
- Certification cost per unit of capital $\eta > 0$

Part 2 Equilibrium

Part 2a Model with no capital requirements

Banks' decisions

- Bank lending to entrepreneurs of type p sets
 - (1) Capital k_p per unit of loans
 - (2) Borrowing rate B_p offered to debtholders
 - (3) Lending rate R_p offered to entrepreneurs
 - \rightarrow Such contract determines screening s_p

Banks' profits

• Profits of bank lending to type p (per unit of loans)

$$\pi_p = (1 - p + s_p)[R_p - (1 - k_p)B_p] - c(s_p) - \eta k_p$$

- \rightarrow with probability $1 p + s_p$ gets R_p and pays $(1 k_p)B_p$
- \rightarrow with probability $p s_p$ gets zero (limited liability)
- \rightarrow minus screening cost $c(s_p)$
- \rightarrow minus certification cost ηk_p

Equilibrium

- An equilibrium is array $(k_p^*, B_p^*, R_p^*, s_p^*)$ that solves $\min R_p$
 - → subject to incentive compatibility constraint

$$s_p^* = \arg\max_{s} \left\{ (1 - p + s) [R_p^* - (1 - k_p^*) B_p^*] - c(s) \right\}$$

→ debtholders' participation constraint

$$(1-p+s_p^*)B_p^* \ge 1$$

→ and shareholders' participation constraint

$$\pi_p^* \ge (1+\delta)k_p^*$$

Capital and screening

• IC constraint

$$s_p^* = \arg\max_{s} \left\{ (1 - p + s) [R_p^* - (1 - k_p^*) B_p^*] - c(s) \right\}$$

→ Interior solution characterized by FOC

$$R_p^* - (1 - k_p^*) B_p^* = c'(s_p^*)$$

→ "Skin in the game" effect

$$\frac{\partial s_p^*}{\partial k_p^*} > 0$$

Proposition 1

• There is a marginal type

$$\hat{p} = 1 - \sqrt{\frac{1 + \delta + \eta}{(\delta + \eta)c''(0)}}$$

- \rightarrow Safer types $p \le \hat{p}$ choose market finance: $s_p^* = k_p^* = 0$
- \rightarrow Riskier types $p > \hat{p}$ choose bank finance: $s_p^* > 0$ and $k_p^* > 0$

Bank capital

Borrowing and lending rates

Probability of default (PD)

Comparative statics on certification cost

- Effect of a reduction in certification cost η (from η_1 to η_0)
 - → Expands region where bank finance is optimal
 - → Increases banks' capital and screening
 - → Reduces entrepreneurs' probability of default

Bank capital

Probability of default (PD)

Private vs public certification

- Introduce two possible certification agencies
 - \rightarrow Public agency (bank supervisor) with cost η_0
 - \rightarrow Private agencies with cost $\eta_1 > \eta_0$
- Why is private certification costlier than public certification?
 - → Supervisor may have less incentive problems
 - → Supervisor may have access to richer information
- What is flip side of public certification?
 - → Banks have to comply with regulation

Part 2b Flat capital requirements

Flat capital requirements

• Flat requirement (Basel I) or leverage ratio (Basel III)

$$k_p \ge \overline{k}$$

- Complying with regulation implies certification
 - \rightarrow Certification cost $\eta_0 = 0$
- Not complying with regulation implies no public certification
 - \rightarrow Certification cost $\eta_1 > 0$
 - → Higher cost of capital for shadow banks

Capital with flat requirements

Two cases: low and high flat requirements

- With low flat requirements
 - → Only direct market finance and regulated banks
 - → No role for shadow banks
- With high flat requirements
 - → Shadow banks can profitably enter the market
 - → To fund medium-risk projects
 - → Taking over part of the regulated banks' market

Capital with low flat requirements

Capital with high flat requirements

PD with high flat requirements

Effect of tightening flat capital requirements

- Drives safer borrowers away from regulated banks
 - → Lower screening and higher risk
- Low-risk regulated banks become safer
 - → Higher capital increases screening incentives
- No effect on high-risk regulated banks
 - → Capital requirement is not binding
 - → These banks maintain capital buffers

Part 2c Value-at-Risk based capital requirements

VaR capital requirements (i)

- Introducing a VaR-based capital requirement (à la Basel II)
 - → In Basel II

$$\Pr(\text{loan losses} \ge \overline{k}_p) = \alpha$$

where $1 - \alpha$ is confidence level (e.g. 99.9%)

→ In our setup this is equivalent to

$$\Pr(\text{loan default } \mid \overline{k}_p) = \alpha$$

VaR capital requirements (ii)

• To ensure

$$\Pr(\text{loan default } \mid \overline{k}_p) = \alpha$$

- \rightarrow we require \overline{k}_p to be such that $p s_p = \alpha$
- Model then gives closed-form capital requirements formula

$$\overline{k}_p = f(p, \alpha)$$

- \rightarrow Increasing in risk p
- \rightarrow Increasing in confidence level 1α

VaR capital requirements

Capital with VaR requirements

Two cases: low and high VaR requirements

- With low VaR requirements
 - → Only direct market finance and regulated banks
 - → No role for shadow banks
- With high VaR requirements
 - → Shadow banks can profitably enter the market
 - → To fund high-risk projects
 - → Taking over part of the regulated banks' market

Capital with low VaR requirements

Capital with high VaR requirements

PD with high VaR requirements

Effect of tightening VaR requirements

- Drives risky borrowers away from regulated banks
 - → Lower screening and higher risk
- Medium-risk regulated banks become safer
 - → Higher capital increases screening incentives
- No effect on low-risk regulated banks
 - → Capital requirement is not binding
 - → These banks maintain capital buffers

Part 3 Optimal capital requirements

Social welfare function (i)

- Investors receive opportunity cost of their funds
 - → Participation constraints are satisfied with equality
- Entrepreneurs borrow at rates that leaves them no surplus
 - \rightarrow By assumption of free entry
- Social welfare comes from output produced by entrepreneurs
 - → Introduce representative consumer
 - \rightarrow Utility function over goods produced by types $p \in [0,1]$
 - → Unit investment produces unit output, if successful

Social welfare function (ii)

• Utility function of representative consumer

$$U(q,x) = q + \frac{\sigma}{\sigma - 1} \int_0^1 (x_p)^{\frac{\sigma - 1}{\sigma}} dp$$

- $\rightarrow q$ is consumption of composite good
- $\rightarrow x_p$ is output of entrepreneurs of type p

$$\rightarrow \sigma > 1$$

Social welfare function (iii)

• Budget constraint of representative consumer

$$q + \int_0^1 A_p x_p \ dp = I$$

- $\rightarrow A_p$ is unit price of goods produced by type p
- \rightarrow I is consumer's income

Social welfare function (iv)

• Maximizing the utility subject to the budget constraint gives

$$A_p = (x_p)^{-1/\sigma}$$

• Substituting this result into the utility function gives SWF

$$W(x) = I + \frac{1}{\sigma - 1} \int_0^1 (1 - p + s_p)(x_p)^{\frac{\sigma - 1}{\sigma}} dp$$

 \rightarrow Taking into account that x_p obtains with prob. $1 - p + s_p$

Optimal capital requirements

• Optimal capital requirements defined by

$$k^* = \operatorname{arg\,max}_k W(x(k))$$

- Optimal capital requirements are risk-sensitive
 - → But do <u>not</u> satisfy VaR condition
 - → Lower confidence level for higher risks
 - → To avoid emergence of shadow banks for riskier firms

Optimal capital requirements

PD with optimal capital requirements

Part 4 Extensions

Part 4a Changes in funding costs

Changes in funding costs

- Two key parameters
 - \rightarrow Expected return required by debtholders (safe rate) R_0
 - \rightarrow Excess cost of bank capital δ

Results

- Under flat or VaR requirements shadow banks will thrive when
 - → Safe rate is low (savings glut)
 - → Cost of capital is high
- Optimal capital requirements should be lowered when
 - \rightarrow Safe rate is low
 - + To avoid lending shifting out of regulated banks
 - → Cost of capital is high
 - + Rationale for countercyclical regulation

Part 4b Endogenous cost of capital

Endogenous cost of capital

- Assume fixed supply of bank capital
 - → Could also be made upward sloping
- Tightening flat or VaR capital requirements affects all banks
 - → Higher risk for those not constrained by the regulation
 - → Some regulated and all shadow banks will be riskier
 - \rightarrow As a result of the higher cost of capital

Concluding remarks

Concluding remarks (i)

- Model of the effects of bank capital regulation on
 - → Structure and risk of the financial system
- Key element: distinction between regulated and shadow banks
 - → Based on certification of capital by supervisor
 - → Alternative: deposit insurance subsidy for regulated banks
- Shadow banking will expand with
 - → Higher (supervisory) costs of public certification
 - → Higher costs of deposit insurance

Concluding remarks (ii)

- Model is set in terms of entrepreneurial finance
 - → Could also be interpreted in terms of household finance
- Model assumes that screening reduces probability of default
 - → Could also consider reducing loss given default

Concluding remarks (iii)

- Higher capital requirements
 - → Ameliorate risk-taking incentives: bright side
 - → Drive some borrowers to shadow banks: dark side
 - → Flat requirements lead to medium risk shadow banks
 - → VaR requirements lead to high risk shadow banks

Concluding remarks (iii)

- Higher capital requirements
 - → Ameliorate risk-taking incentives: bright side
 - → Drive some borrowers to shadow banks: dark side
 - → Flat requirements lead to medium risk shadow banks
 - → VaR requirements lead to high risk shadow banks
- Optimal requirements will not be VaR-based
 - → Lower confidence level for higher risk